As-Built Seismic Analysis of the Golden Gate Bridge Main Suspension Spans

HR

Western Bridge Engineers' Seminar September 4, 2013

Ted Bush, P.E. S.E. (Boise, ID) Kuang Lim, PH.D., P.E.(Walnut Creek, CA) HDR Engineering

Project Background – Seismic Retrofit Program

Project Background – Seismic Criteria

- Project Specific GGB Design Criteria for Seismic Retrofit Measures, 1992
- AASHTO LRFD Bridge Design Specifications 2007 edition
- Caltrans Seismic Design Criteria Version 1.6

ADINA Global Computer Model

• Isometric view - 11,420 node, 3D model

Model Summary

- Finite Element Groups
- Material Nonlinearity
- Geometric Nonlinearity
- Section Properties, Capacities & Material Properties based on:
 - shop drawings
 - design drawings
 - Chief Engineer's Report

Element Group		Element		Element Group Formulation			
No.	Description	Type No.		Material	Displacement		
100	Tower Bases	Shell	10,636	Linear Elastic	Small		
150	Tower Base Vertical Supports	Spring	512	Nonlinear (Compression-Only)	Small		
155	Tower Base Vertical Dampers	Damper	512	Linear	Small		
160	Tower Base Longitudinal Supports	Spring	512	Linear	Small		
170	Tower Base Transverse Supports	Spring	512	Linear	Small		
180	Tower Base Anchorage Posts	Truss	48	Plastic-Bilinear (Tension Rupture)	Small		
200	Tower Shafts & Struts	Beam	330	Linear Elastic	Large		
300	Pylon S1 Legs	Beam	8	Linear Elastic	Small		
301	Pylon S2 Legs	Beam	10	Linear Elastic	Small		
302	Pylon N1 Legs	Beam	9	Linear Elastic	Small		
350	Pylon S1 Shear Walls & Diaphragms	Shell	19	Linear Elastic	Small		
351	Pylon S2 Shear Walls & Diaphragms	Shell	12	Linear Elastic	Small		
352	Pylon N1 Shear Walls & Diaphragms	Shell	22	Linear Elastic	Small		
400	Main Cables	Cable	352	Linear Elastic	Large		
401	Main Cable Dampers	Damper	352	Linear	Small		
450	Suspenders & Tie-Downs	Cable	254	Nonlinear-Elastic (Tension-Only)	Large		
451	Suspender & Tie-Down Dampers	Damper	254	Linear	Small		
500	Stiffening Trusses	Beam	7,298	Linear Elastic	Small		
550	Stiffening Truss Rocker Links	Beam	12	Linear Elastic	Large		
590	Stiffening Truss Center Struts	Beam	134	Linear Elastic	Small		
600	Windlock Connections	Spring	20	Linear & Nonlinear	Small		
700	Main Cable Restraints	Spring	16	Linear & Nonlinear	Small		
_	Total Number of Elements in	Model -					

Stiffening Truss Modeling

- 2 Side Span & 1 Main Span Stiffening Truss System
- Connected at Pylons & Towers through Windlock System
- Beam elements modeled between work points to accurately represent the stiffness
- Truss Members Include:
 - top chords, bottom chords, diagonals, verticals, rocker links, floor beams, kicker bracing, top & bottom lateral bracing, outriggers, and portals

Stiffening Truss Modeling

Stiffening Truss Modeling - Windlock Connections at Pylons

- As-Built Articulation
- Complete and Representative Load Transfer Paths in All Directions
- Nonlinear Longitudinal Gap Element

<u>Plan</u>

Tower Modeling

- Typical Beam Elements
- Base Shell Elements
- Parametric Studies

Section at Base

H

Elevation

9

Tower Modeling

- Compression Only Vertical
 Springs
- Anchorage Posts
 - tension only rupture truss elements
- Base Plates & Transition Plates
- Lower Strut Gussets Explicitly Modeled

Tower Base Modeling

- Refined modeling
- Improved stress distribution
 - base
 - transition
- Directly capture nonlinearities
 - transverse & longitudinal uplift
 - plasticity
 (accumulated plastic strain)

3D Isometric View

Tower Parametric Studies

• Vertical Mesh Distribution

2 ft Vertical Mesh	4 ft Vertical Mesh	8 ft Vertical Mesh
Stress Contour Legend (k	si):	
0.0 3.8 7.7 11	5 15.4 19.2 23.1 26.9 30.8 34.6 38.5	42.3 46.2 50.0

Developed Longitudinal Elevations

Base Transition

 plane
 sections do
 not remain
 plane at
 transition

Longitudinal Sections

Tower Parametric Studies

Base Transition (cont'd) location selected to control accuracy of displacements & stresses

Main Cable & Suspender Modeling

- Cable Elements
- Main Cables linear elastic material properties
- Suspenders nonlinear material properties

Longitudinal Elevation

Cable Profile

- Cables Behave Geometrically Nonlinear
 - cable stiffness dependent on deformation (strain)
 - stiffness increases with increase in deformation
 - final profile is dependent on final stress & amount of deformation cable has experienced between 0 and final force
- Global Model Cable Initial Coordinates = Final Displaced Coordinates
 - approximation to eliminate need for complete 3-D model staged construction model
- Required Global Model Cable Input = Coordinates & Initial Strains
 use 2 simplified stand-alone models to obtain required input:
 - 1. Staged Construction Cable Model
 - 2. Equivalent Initial Coordinates & Initial Strains Cable Model
 - use Original Strauss dead load

Staged Construction Cable Model

Equivalent Initial Coordinates & Initial Strains Cable Model

Cable Profile – Global Model

Cable Profile – Global Model vs. 1992 Survey

Comparison

- 1992 Survey

 excellent
 correlation
- Main Cable Forces

 within 3% of
 Chief Engineer's
 Report
- Rotations at Anchorages & Towers
 - within 0.3% of
 Chief Engineer's
 Report

- 475 Modes Using ADINA's Subspace Iteration Method
- Compared Well with Other Published Studies

Mode	Frequency (Hz)	Period (sec)	Mass Participation	S _A (g)	S _A (g) * Mass Participation	Mode Description
				Predomina	ant Longitudinal M	lodes
2	0.0860	11.631	10.0%	0.029	0.3%	Mainspan
5	0.1297	7.713	10.4%	0.068	0.7%	Mainspan
46	0.5568	1.796	30.3%	0.643	19.5%	Sidespans & Towers
64	0.7250	1.379	3.3%	0.851	2.8%	Sidespans & Towers
71	0.7811	1.280	1.4%	0.923	1.3%	Sidespans & Towers
156	1.0133	0.987	1.1%	1.154	1.2%	Sidespans, Mainspan & Towers
207	1.5448	0.647	1.8%	1.588	2.8%	Sidespans & Pylon S1
209	1.5548	0.643	5.3%	1.597	8.4%	Sidespans & Pylon S1
268	2.1258	0.470	4.7%	1.945	9.1%	Pylon S2
272	2.1469	0.466	1.1%	1.957	2.2%	Sidespans & Towers
				Predomir	nant Transverse M	odes
1	0.0488	20.495	23.2%	0.008	0.2%	Mainspan
15	0.2218	4.509	3.0%	0.210	0.6%	Mainspan, Coupled With Torsion
17	0.2618	3.820	2.2%	0.278	0.6%	Sidespans
18	0.2619	3.818	9.7%	0.278	2.7%	Sidespans
22	0.3000	3.333	2.3%	0.343	0.8%	Sidespans, Coupled With Torsion
35	0.4243	2.357	1.9%	0.556	1.1%	Mainspan & Towers, Coupled With Torsion
44	0.5280	1.894	4.6%	0.700	3.2%	Mainspan & Towers, Coupled With Torsion
56	0.6493	1.540	4.5%	0.872	3.9%	Sidespans, Mainspan & Towers, Coupled With Torsion
220	1.6539	0.605	1.4%	1.885	2.6%	Sidespans, Mainspan & Towers, Coupled With Torsion
				Predom	ninant Vertical Mo	des
4	0.1281	7.808	2.1%	0.049	0.1%	Sidespans & Mainspan
6	0.1632	6.128	1.5%	0.078	0.1%	Sidespans & Mainspan
16	0.2583	3.872	14.1%	0.164	2.3%	Sidespans & Mainspan
19	0.2861	3.495	18.2%	0.189	3.4%	Sidespans & Mainspan
65	0.7434	1.345	1.0%	0.619	0.6%	Sidespans

Mode 1: Transverse Mainspan, Period = 20.50 sec, Mass Part. = 23.2%

Mode 2: Longitudinal Mainspan, Period = 11.63 sec , Mass Part. = 10.0%

Mode 16: Vertical Sidespans & Mainspan, Period=3.87 sec , Mass Part.=14.1%

Rayleigh Damping Coefficients – Stiffening Truss, Main Cables & Suspenders

 Coefficients based on average ambient vibration measurements by Abdel-Gaffar, 1982

 $- \alpha = 0.111254, \beta = 0.003672$

- Best-fit ambient curves
- 2% min.(2.75% avg.) curve used for comparison for reasonableness
- Conservative estimate of damping

Rayleigh Damping Coefficients – Pylons

- Isolated Pylon Models
- Coefficients selected for each pylon to provide 5% average damping ratio
- Pylon S2 - $\alpha = 1.440837$ - $\beta = 0.000980$
- Pylon S1
 - $\alpha = 1.051948$ $- \beta = 0.001240$
- Pylon N1
 - $\alpha = 4.723483$
 - β = 0.000341

Rayleigh Damping Coefficients – Towers

• Coefficients selected to provide 2% avg. damping ratio

 $- \alpha = 0.110880, \beta = 0.003370$

- Average is over frequencies that can be accurately captured by model (first 10 modes)
- Allow for significant period changes without over-damping
 - Fundamental Transverse Period = 1.8 sec

Additional Damping

- Tower Bases
 - Additional 5% damping to approximate rocking on concrete pier
 - Vertical dashpots introduced at base of tower
- Main Cables & Suspenders
 - Add perpendicular dashpots with C = βK_g between adjacent cable nodes

Model Verification – Parametric / Sensitivity Studies

- Static Longitudinal & Transverse Pushes
- Isolated Tower Model compare ADINA & SAP model results — dead load, unit push & modal analysis
- Isolated Towers & Pylons Time History Analysis
- Local Deck & Stiffening Truss Interaction
- Non-Proportional Rayleigh Damping Verification
- Concrete Pier Influence on Global Behavior
- Tower Shaft Base Spring Constants
- Consistent vs. Lumped Mass
- Iteration Tolerances
- Integration Time Steps
- Wind & Live Load

Local Deck and Stiffening Truss Interaction

- Orthotropic Deck System
 <u>Stiffness</u> not included in Global Model
- Refined SAP linear elastic Local Model created
- TH Input applied at chord boundaries & suspenders
- Verify Floorbeam & Pedestal demands
- Conclusion:
 - Maximum stiffness contribution approx. 8%
 - Deck system assumption validated

<u>3D Isometric View – SAP Local Model</u>

Assessing Seismic Performance

- Elastic Performance D/C
 - AASHTO
 - Combined Axial + Flexure
 - Shear & Torsion
- Inelastic Performance Ductility
 - Global & Local Ductility
 - Cumulative Plastic Displacement Index (CPDI)
 - Number of Equiv. Inelastic Cycles
 - $N = CPDI / (\mu_c + \mu_t 2)$
 - Local Rotational Ductility
 - Cumulative Plastic Rotational Index (CPRI)
 - Ductility Levels Specified by Project Specific Design Criteria

SA1 – Disp. / Reactions

HR

Model Description As-Built ADINA Global Model Model File Name GGSB_Rev_02_20120505

	Relative Displacements								
Tower and Truss	Longitudi	inal (X)	Transver	se (Y)	Vertical (Z)				
		Max.	Min.	Max.	Min.	Max.	Min.		
	Top (Cable)	11.2	-12.8	23.7	-24.0	-1.2	-4.3		
	Strut 2	23.4	-21.6	17.8	-19.3	-0.6	-3.6		
Couth Tours	Strut 3	28.1	-25.1	13.1	-14.8	-0.1	-3.0		
South Tower	Strut 4	24.6	-21.8	9.0	-9.9	0.2	-2.3		
	Strut 5 (Deck)	13.5	-11.4	3.2	-3.3	0.5	-1.3		
	Shaft Base (Neg. Z = Uplift)	0.1	-0.1	0.1	-0.1	0.2	-2.1		
	Top (Cable)	11.8	-11.8	26.5	-25.3	-0.9	-4.2		
	Strut 2	21.0	-20.6	20.8	-20.2	-0.3	-3.5		
No th Towar	Strut 3	25.3	-26.5	16.5	-15.7	0.1	-2.9		
NOTTH TOWER	Strut 4	21.9	-23.7	11.3	-10.3	0.4	-2.2		
	Strut 5 (Deck)	12.2	-12.4	4.1	-3.7	0.7	-1.3		
	Shaft Base (Neg. Z = Uplift)	0.1	-0.1	0.1	-0.1	0.1	-2.1		
	South Sidespan	26.2	-23.4	59.3	-60.9	54.1	-45.2		
Truss	M ain span	34.9	-33.2	31.5	-30.2	57.6	-42.5		
	North Sidespan	21.4	-21.3	60.4	-56.8	70.0	-67.3		

Reactions(kip, kip	Longitudinal (FX, MY)		Transvers	e (FY, MX)	Vertical	Note		
	Max.	Min.	Max. Min. Max.		Max.	Min.	NOLE	
South Anchorage	Base Force (Axial/Shear)	-36,654	-59,682	670	-617	-10,757	-17,702	per cable
	Top Force (Axial/Shear)	6,428	-6,936	1,996	-1,890	58,731	40,926	per cable
South Tower	Base Force (Axial/Shear)	21,604	-24,639	21,092	-21,570	193,764	90,883	total
	Base Moment	3.121E+06	-3.327E+06	5.587E+06	-6.591E+06	2.670E+05	-3.010E+05	reaction
	Top Force (Axial/Shear)	6,189	-6,530	2,102	-2,425	57,533	39,399	per cable
North Tower	Base Force (Axial/Shear)	22,760	-20,750	25,172	-24,475	189,772	86,929	total
	Base Moment	3.372E+06	-3.015E +06	6.840E+06	-6.458E+06	2.126E+05	-2.544E+05	reaction
North Anchorage	Base Force (Axial/Shear)	57,480	33,686	1,779	-2,343	-10,619	-18,615	per cable

Expansion Joints and Windlocks		Relative Disp. (inch)		Shear Force (kip)						
(underlined values in	Longitudinal (X)		Longitudinal (X)		Transverse (Y)		Vertical (Z)			
				Max.	Min.	Max.	Min.	Max.	Min.	
Expansion Joint -	South Pylon S1 (U0)	20.6	-23.2	-	-	-	-	-	-	
South Sidespan	South Tower (U44)	8.5	<u>-11.6</u>	-	-	-	-	-	-	
Expansion Joint -	South Tower (U46)	23.7	-29.0	-	-	-	-	-	-	
Mainspan	North Tower (U46')	26.7	-26.7	-	-	-	-	-	-	
Expansion Joint -	North Tower (U44')	<u>10.1</u>	-8.9	-	-	-	-	-	-	
North Sidespan	North Pylon N1 (U0')	21.1	-20.5	-	-	-	-	-	-	
Windlock -	South Pylon S1 (U0)	<u>16.1</u>	-17.6	<u>6269</u>	-8694	3913	-3495			
South Sidespan	South Tower (U44)	0.1	<u>-0.1</u>	10348	<u>-13811</u>	3255	-2909	214	-271	
Windlock -	South Tower (U46)	<u>18.2</u>	-21.2	<u>16582</u>	-17055	1836	-2630			
Mainspan	North Tower (U46')	21.1	<u>-18.2</u>	<u>18842</u>	-11362	1998	-1869			
Windlock -	North Tower (U44')	0.1	-0.1	11080	-8926	3226	-2769	186	-224	
North Sidespan	North Pylon N1 (U0')	17.6	-16.0	4711	-5807	3667	-2862			

SA1 – Stiffening Truss Top Chord D/C Ratios

SA1 – Stiffening Truss Top Lateral D/C Ratios

SA1 – Tower D/C Ratios

HR

SA1 – Tower Base Max. Von Mises Stress (Yield = 52.4 ksi)

Thank You! Questions?

