Performance Objectives and the AASHTO *Guide Specifications for LRFD Seismic Bridge Design*

> **Elmer E. Marx, PE, SE State of Alaska DOT&PF Bridge Section Juneau, Alaska**

Performance Objectives

• AASHTO *Guide Specifications for LRFD Seismic Bridge Design* (SGS) is primarily a displacement-based design approach

SGS addresses a single performance objective

• No collapse as a result of the single hazard level (1000 year event)

Performance Objectives

- User expectations, down time, economics
- Need for better seismic bridge performance
	- *Minimal* damage ~ some yielding
	- *Repairable* damage ~ spalling
	- *No collapse* ~ buckling or rupture
- A "functional level" EQ may be needed (100 year event) with minimal or repairable damage

Performance Objectives

• *CALTRANS* MTD 20-1 (July 2010)

• Oregon DOT also has multiple hazard level design approach

Performance Objective

- How to design for performance objectives?
	- Displacement ductility
	- Plastic hinge rotation
	- Material strain limits
- SGS provides strain limits (e.g. Table 8.4.2-1)

• Perhaps add performance objective strain limits

No Collapse Performance

• SGS strain-based deformation limits

Figure 8.5-1

Performance Objective

- Some performance strain limits of interest
	- Concrete tensile cracking
	- Concrete compressive spalling
	- Confined concrete core crushing
	- Longitudinal bar tensile yielding
	- Longitudinal bar buckling
	- Longitudinal bar tensile rupture
	- Transverse bar yielding
	- Transverse bar rupture

• Sample strain limits

Performance Objective

- But it's more than just strain limits
	- Permanent drift and settlement limits
	- Multiple EQ hazard levels
	- Statistical calibration / fragility curves
	- Indirect seismic hazards
	- User expectations after EQ event

• Comparison between quasi-static and the standard three-cycle loading protocol

(Kowalsky et al. 2010 - NCSU)

• SGS reduced ultimate tensile strain, ε*^R su*, based upon 3-cycle laboratory loading protocol

• SGS appears conservative but "one-size-fitsall" may be inadequate

Strain limits based upon anticipated EQ deformations may be warranted

• FHWA *Seismic Retrofitting Manual*

$$
\varepsilon_{ap} = 0.08 * (2 * N_f)^{-1/2}
$$

where:

 ε_{ap} = low-cycle fatigue strain amplitude N_f = equivalent equal amplitude cycles $N_f = 3.5*(T_n)^{-1/3}$ 2 < N_f < 10 T_n = natural period of bridge $\phi_p = 2 * \varepsilon_{ap} / (D')$

EQ Load History Effects

• Ongoing research includes directional considerations

Strain to Deformation

 \bullet Integration : load \rightarrow shear \rightarrow moment (curvature $M-\phi$) \rightarrow slope \rightarrow deflection

• Numerous approaches to "integrate"

 Analytical plastic hinge length is a simplification used to transform curvature to rotation (slope) and is used in the SGS

Plastic Hinge Length, *Lp*

Moments

Curvatures

Deflections

Member

 Δ ^{*y*} ~ ϕ ^{*} $L^2/3$

 $\Delta_u \sim \Delta_v + \Delta_p$

 $\Delta_p \sim \theta_p * L$

 $\theta_p \sim (\phi_u - \phi_y)^* L_p$

Displacement

Plastic Hinge Length, *Lp*

 $L_p = 0.08 * L + 0.15 * f_{ve} * d_{bl}$

where:

L = distance from hinge to zero moment f_{ye} = expected bar yield stress d_{bl} = longitudinal column bar diameter

• Moment gradient part (column) and a strain penetration part (footing / cap / shaft)

Reducing either the moment gradient part or the strain penetration part will reduce [∆]*^u*

• Calibrated to the ultimate strain limit and corresponding deformation

• Modifications may be required to better correlate deformations at lower strain values

• Curvature dependent plastic hinge length

Sidetrack - ABC Connections

Method of connecting and anchoring reinforcement to prefabricated elements

− Grouted Bar Couplers

− Mechanical Bar Couplers

− Grouted Ducts

− Welded Bar Splices

Sidetrack - ABC Connections

Sidetrack - ABC Connections

• Can develop full tensile strength of bar

Stiffer stress-strain than un-spliced bar

These devices may reduce the analytical plastic hinge length

Smaller L_p suggest higher strains at smaller displacement (performance objectives?)

• SGS defines bar failure on tensile rupture

Under cyclic loading, tensile bar rupture is often proceeded by bar buckling which is proceeded by a large tensile strain and yielding of the transverse reinforcement

Will likely need strain limits for bar buckling

Bar buckling performance limit

FHWA Seismic Retrofitting Manual

$$
\varepsilon_{b} = 2 * f_{y} / E_{s}
$$

where:

 ε_b = bar buckling strain = $\frac{1}{2} * \varepsilon_v$ f_v = yield stress *Es* = modulus of elasticity $\phi_p = \varepsilon_b / (c - d) - \phi_y$

Compressive stress during tensile strain
Displacement (mm)

• UW (Berry and Eberhard) bar buckling drift limits based upon the column test database

 $\Delta_{bb}/L = 3.25*(1+k_{e_bb}*\rho_{eff}*d_b/D)*(1-P/A_g*fc_c)*(1+L/10*D)$

where:

 k_{e} *bb* = 40 for rectangular, 150 for circular and 0 if $s/d_b > 6$ $\rho_{\text{eff}} = \rho_s * f_{\text{ys}}/f_{\text{c}}$ d_b = diameter of longitudinal column bars $L =$ distance between plastic hinge and contraflexure point *D* = column diameter or depth in direction of loading

• NCSU recommendations

Concrete Filled Steel Pipes

Concrete Filled Steel Pipes

- + Minimize in-water work, no cofferdam + High strength, stiffness, seismic resistance + Open ended piles for obstruction removal + Scour and liquefaction resistant
- Pile availability (API 5L vs. ASTM A 252) Field welding, QC and QA
- How to connect to "weaker" cap beam?
- Below ground hinging

Concrete Filled Steel Pipes

• AKDOT sponsored research at NCSU

• First principles (equilibrium compatibility) • 33 \lt D/t \lt 192 (piles and drilled shafts) • With and without reinforcing steel • Straight seam and spiral welded • Buckling and rupture strain limits • Analytical plastic hinge length (ongoing)

Large lateral deformation capacity

Good force-deformation / hysteretic response

• Onset of buckling and rupture

• Onset of pipe wall buckling (tensile strain) $\varepsilon_b \sim 0.022 - (D/t)$ / 9,000

Reduced ultimate tensile strain $\varepsilon_{su}^R \sim 0.026$ in./in.

Strain ε

Direct Displacement Design

Start with performance objective (strain, deflection or ductility limits)

Size the member (column diameter)

• Reinforce to specified resistance (^ρ*^l*)

• Check non-seismic load combinations

Direct Displacement Design

• Advantages

- + insensitive to initial stiffness
- + relatively easy to use
- + different methodology for QC/QA

• Disadvantages

- equivalent viscous damping
- complex geometry limitations
- limited utilization to date

splacement Based

Questions - Thank you

STATE OF ALASKA DEPT. OF TRANSPORTATION **AND PUBLIC FACILITIES**

Elmer Marx, P.E. **Senior Bridge Engineer**

Bridge Section 3132 Channel Drive P.O. Box 112500 Juneau, Alaska 99811-2500

OFFICE 1-907-465-6941 FAX 1-907-465-6947 E-MAIL: elmer.marx@alaska.gov