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Performance Objectives 

• AASHTO Guide Specifications for LRFD 
Seismic Bridge Design (SGS) is primarily a 
displacement-based design approach 
 

• SGS addresses a single performance objective 
 

• No collapse as a result of the single hazard 
level (1000 year event) 



Performance Objectives 

• User expectations, down time, economics 
 

• Need for better seismic bridge performance 
• Minimal damage  ~ some yielding 
• Repairable damage ~ spalling  
• No collapse  ~ buckling or rupture 

 
• A “functional level” EQ may be needed (100 

year event) with minimal or repairable damage 



Performance Objectives 

• CALTRANS MTD 20-1 (July 2010) 
 
 
 
 
 

• Oregon DOT also has multiple hazard level 
design approach 



Performance Objective 

• How to design for performance objectives? 
 

• Displacement ductility 
• Plastic hinge rotation 
• Material strain limits 

 

• SGS provides strain limits (e.g. Table 8.4.2-1) 
 

• Perhaps add performance objective strain limits  



No Collapse Performance 
• SGS strain-based deformation limits 

 

Table 8.4.2-1 

Figure 8.4.4-1 

Figure 8.5-1 



Performance Objective 

• Some performance strain limits of interest 
• Concrete tensile cracking 
• Concrete compressive spalling 
• Confined concrete core crushing 
• Longitudinal bar tensile yielding 
• Longitudinal bar buckling 
• Longitudinal bar tensile rupture 
• Transverse bar yielding 
• Transverse bar rupture 



Performance Objective 

• Sample strain limits 
Performance 

Objective 
Concrete Strain Limit 

(Compression) 
Steel Strain Limit 

(Tension) 

 
Minimal 

(proposed) 
 

~ 0.005 in/in ~ 0.003 in/in 

Repairable 
(proposed) 

Spalling of cover concrete, 
onset of bar buckling, etc. 

εsh onset of strain hardening, 
residual concrete crack width less 

than about 1mm, etc. 

 
No Collapse 
(from SGS) 

 

εcu = 0.004+1.4*ρs*fy*εsu/f ’cc 

εR
su = 0.09 in/in for db ≤ #10 

 
εR

su = 0.06 in/in for db ≥ #11 



Performance Objective 

• But it’s more than just strain limits 

• Permanent drift and settlement limits 

• Multiple EQ hazard levels 

• Statistical calibration / fragility curves 

• Indirect seismic hazards 

• User expectations after EQ event 
 



EQ Load History Effects 

• Comparison between quasi-static and the 
standard three-cycle loading protocol 

(Kowalsky et al. 2010 - NCSU) 
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EQ Load History Effects 

 

 

• SGS reduced ultimate tensile strain, εR
su, 

based upon 3-cycle laboratory loading 
protocol 
 

• SGS appears conservative but “one-size-fits-
all” may be inadequate 
 

• Strain limits based upon anticipated EQ 
deformations may be warranted 



EQ Load History Effects 

 

 

• FHWA Seismic Retrofitting Manual 
  
          εap = 0.08 * (2 * Nf)-1/2 

where: 
 εap = low-cycle fatigue strain amplitude 
 Nf = equivalent equal amplitude cycles 
 Nf  = 3.5*(Tn)-1/3                 2 < Nf  < 10 
 Tn = natural period of bridge 
 φp = 2 * εap / (D’) 



EQ Load History Effects 

• Ongoing research includes directional 
considerations 



Strain to Deformation 

 Integration : load → shear → moment 
(curvature M-φ) → slope → deflection  
 

 Numerous approaches to “integrate” 
 

 Analytical plastic hinge length is a 
simplification used to transform curvature to 
rotation (slope) and is used in the SGS  



Plastic Hinge Length, Lp 

∆y ~ φy * L2 / 3 
 
∆u ~ ∆y + ∆p 
 
∆p ~ θp * L 
 
θp ~ (φu  - φy)* Lp 
 



Plastic Hinge Length, Lp 

Lp = 0.08 * L + 0.15 * fye * dbl 
 

where: 
 L = distance from hinge to zero moment 
 fye = expected bar yield stress  
 dbl = longitudinal column bar diameter 
 

• Moment gradient part (column) and a strain 
penetration part (footing / cap / shaft) 
 



Plastic Hinge Length, Lp 

• Reducing either the moment gradient part or 
the strain penetration part will reduce ∆u 
 

• Calibrated to the ultimate strain limit and 
corresponding deformation 
 

• Modifications may be required to better 
correlate deformations at lower strain values 
 

 



Plastic Hinge Length, Lp 

• Curvature dependent plastic hinge length 



Sidetrack - ABC Connections 

 

 

• Method of connecting and anchoring 
reinforcement to prefabricated elements 
 

− Grouted Bar Couplers 

− Mechanical Bar Couplers 

− Grouted Ducts 

− Welded Bar Splices  

 



Sidetrack - ABC Connections 



Sidetrack - ABC Connections 

 

 

• Can develop full tensile strength of bar 
 

• Stiffer stress-strain than un-spliced bar 
 

• These devices may reduce the analytical 
plastic hinge length 
 

• Smaller Lp suggest higher strains at smaller 
displacement (performance objectives?) 
 



Longitudinal Bar Buckling 

 

 

• SGS defines bar failure on tensile rupture 
 

• Under cyclic loading, tensile bar rupture is 
often proceeded by bar buckling which is 
proceeded by a large tensile strain and 
yielding of the transverse reinforcement 
 

• Will likely need strain limits for bar buckling 
 



Longitudinal Bar Buckling 

 

 

• Bar buckling performance limit 

 
 



Longitudinal Bar Buckling 

 

 

• FHWA Seismic Retrofitting Manual 
  
   εb = 2 * fy / Es 

where: 
 εb = bar buckling strain = ½ * εy 
 fy = yield stress 
 Es = modulus of elasticity 
 φp = εb / (c – d’) - φy 
 



Longitudinal Bar Buckling 

 

 

• Compressive stress during tensile strain 

 
 



Longitudinal Bar Buckling 

 

 

• UW (Berry and Eberhard) bar buckling drift 
limits based upon the column test database 
 

∆bb/L = 3.25*(1+ke_bb*ρeff*db/D)*(1-P/Ag*f’c)*(1+L/10*D) 
 
where: 
 ke_bb = 40 for rectangular, 150 for circular and 0 if s/db > 6 

 ρeff = ρs*fys/f’c   
 db = diameter of longitudinal column bars 
 L = distance between plastic hinge and contraflexure point 
 D = column diameter or depth in direction of loading 



Longitudinal Bar Buckling 

 

 

• NCSU research approach 
 
 

 
 



Longitudinal Bar Buckling 

 

 

• NCSU recommendations 
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Longitudinal Bar Buckling 

 

 

• NCSU recommendations 
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Concrete Filled Steel Pipes 



Concrete Filled Steel Pipes 

+ Minimize in-water work, no cofferdam 
+ High strength, stiffness, seismic resistance 
+ Open ended piles for obstruction removal 
+ Scour and liquefaction resistant 

 
- Pile availability (API 5L vs. ASTM A 252) 
- Field welding, QC and QA 
- How to connect to “weaker” cap beam? 
- Below ground hinging 



Concrete Filled Steel Pipes 



Strain Limits for CFSP 

 

 

• AKDOT sponsored research at NCSU 

• First principles (equilibrium compatibility) 

• 33 < D/t < 192 (piles and drilled shafts) 

• With and without reinforcing steel 

• Straight seam and spiral welded 

• Buckling and rupture strain limits 

• Analytical plastic hinge length (ongoing) 
 

 



Strain Limits for CFSP 

 

 

• Large lateral deformation capacity 

• Good force-deformation / hysteretic response 

 



Strain Limits for CFSP 

 

 

• Onset of buckling and rupture 

 
 

 

Ductility 2, Δ=2.04 in     Ductility 3, Δ= 3.06 in          Ductility 4, Δ= 4.08in  

    Ductility 5, Δ=6.12 in                             Ductility 6, Δ=8.17 in            Rupture at Ductility 6 pull 2 



Strain Limits for CFSP 

 

 

• Onset of pipe wall buckling (tensile strain)  
  εb ~ 0.022 – (D/t)  / 9,000 

 

• Reduced ultimate tensile strain  
     εR

su ~ 0.026 in./in. 
 



Nontraditional Systems 



Direct Displacement Design 

 

 

• Start with performance objective (strain,  
deflection or ductility limits)  
 

• Size the member (column diameter) 
 

• Reinforce to specified resistance (ρl) 
 

• Check non-seismic load combinations 

 



Direct Displacement Design 

 Advantages 
 +  insensitive to initial stiffness 
 +  relatively easy to use 
 +  different methodology for QC/QA 
 

 Disadvantages 
 -  equivalent viscous damping 
 -  complex geometry limitations 
 -  limited utilization to date 



Questions  - Thank you 
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