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AASHTO Adopted 2007 Guide 
Specifications 
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LRFD Guide Specifications
Table of Contents

♦ 1. Introduction
♦ 2. Symbols and Definitions
♦ 3. General Requirements
♦ 4. Analysis and Design Requirements
♦ 5. Analytical Models and Procedures
♦ 6. Foundation and Abutment Design Requirements
♦ 7. Structural Steel Components
♦ 8. Reinforced Concrete Components
♦ Appendix A – Rocking Foundation Rocking Analysis
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Highlights of the Guide Specifications

♦Performance Based Design Criteria
♦AASHTO/USGS Acceleration Maps for 1000 Year 

Hazard
♦Maps Define the Design Spectral Shape (PGA, 0.2 

sec. and 1.0 sec.)
♦NEHRP Soil Site Factors
♦Four Seismic Design Categories (SDC) Calibrated 

for the Hazard and Performance
♦Flow Charts to Provide Guidance in the 

Application of the Guide Specifications
♦Choice of Three Global Seismic Design Strategies 
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Highlights of the Guide Specifications 
Continued

♦Defined Earthquake Resisting Systems (ERS) and 
Elements (ERE)

♦Recommendations on Structural and Foundation 
Modeling

♦New Procedures for Determining Displacement 
Capacity to Replace the “R” Factor

♦Component Capacity Protection
♦ Improved Procedures for Foundation Design and 

Liquefaction Determination
♦Unanimous Support and Endorsement of the 

AASHTO T-3 Committee
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Figure 3.4.1-2 thru 3.4.1-22 
Peak Horizontal Ground 
Acceleration for the 
Conterminous United States 
(Western) With 7 Percent 
Probability of Exceedance in 
75 Years (Approx. 1000 Year 
Return Period) for:

• PGA

• 0.2 SEC.

• 1.0 SEC

AASHTO/ USGS 
Maps



Earthquake Protection Systems, Inc. 8

Design Spectrum using a 3 Point Method

0.2 (TS)           TS = S1 / SS

0.2                                     1.0

SS:  Sa @ 0.2 sec

S1: Sa @ 1.0 secA = PGA

Decays as 1/T

Spectral Period, T (Sec)

Spectral 
Acceleration,

Sa (g)
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Site Coefficients for Fpga and Fa 

Site Class

Mapped Peak Ground Acceleration or Spectral Response Acceleration 
Coefficient at Short Periods

PGA≤ 0.10
Ss ≤ 0.25

PGA = 0.20
Ss = 0.50

PGA = 0.30
Ss = 0.75

PGA = 0.40
Ss = 1.00

PGA ≥ 0.50
Ss ≥ 1.25

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.2 1.2 1.1 1.0 1.0

D 1.6 1.4 1.2 1.1 1.0

E 2.5 1.7 1.2 0.9 0.9

F a a a a a

Table notes: Use straight line interpolation for intermediate values of PGA and Ss, where PGA is the peak ground 
acceleration and Ss is the spectral acceleration coefficient at 0.2 sec. obtained from the ground motion maps.

a: Site-specific geotechnical investigation and dynamic site response analyses shall be performed (Article 3.4.3).

Table 3.4.2.3-1 Values of Fpga and Fa as a Function of Site Class and Mapped Peak Ground 
Acceleration or Short-Period Spectral Acceleration Coefficient.
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Design Spectra - General Procedure (3.4.1)

♦ Response spectrum 
accelerations

♦ Site factors

PGAFA pgas =

saDS SFS =

11 SFS vD =
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♦ 2007 - MCEER/FHWA Seismic Retrofitting Manual 
for Highway Structures

♦ 2007 - AASHTO Guide Specifications for LRFD 
Seismic Bridge Design Completed

♦ 2007 – AASHTO LRFD Bridge Design 
Specifications Modified to Include 2007; 1,000 Year 
Seismic Hazard

♦ 2008 – NCHRP Seismic Analysis and Design of 
retaining Walls, Buried  Structures Slopes and 
Embankments; NCHRP Report 20-7

Adoption of the New Hazard
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Increasing 
performance

Increasing earthquake 
severity

Relative 
cost

a
b
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e

f

i
h
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Collapse 
Prevention

Limited 
Damage

Essentially 
Elastic

2500 Years

1000  Years

500 Years

Calibration Objectives

Primary System Specified Hazard and Performance
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LRFD Guidelines-Background 
Task 2-Sources of Conservatism

Sou rce  of Conservatism  Safe ty  Factor 

Computa t iona l vs. Exper imenta l Displacement  
Capacity of Components 

1.3 

Effect ive Damping 1.2 to 1.5 
Dynamic Effect  (i.e., st ra in  ra te effect ) 1.2 
Pushover  Techniques Governed by F irst  Plast ic 
Hinge to Reach  Ult imate Capacity 

1.2 to 1.5 

Out  of Phase Displacement  a t  Hinge Sea t  Addressed in  Task 3 
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Idealized Load – Deflection Curve 

Considered 
in Design
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Minimum Support Length Requirements 
SDC A, B, C & D
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Minimum Support Length Requirements 
SDC A, B, C & D

1)-(4.12.2         )000125.01)(08.002.08( 2SHLN +++=
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Increasing 
performance

Increasing earthquake 
severity

Relative 
cost

a
b
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e

f
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g
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Damage

Essentially 
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Primary System 
Estimated Hazard and Performance
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Seismic Design Category (SDC)
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Design Spectra - General Procedure (3.4.1)

♦ Response spectrum 
accelerations

♦ Site factors

PGAFA pgas =

saDS SFS =

11 SFS vD =
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Requirements A B C D
Global Strategy ------- Recommended Required Required
Identification ERS ------- Recommended Required Required
Support Connections Required Required Required Required
Support Length Required Required Required Required
Demand Analysis ------- Required Required Required
Implicit Capacity ------- Required Required -------
Push Over Capacity ------- ------- ------- Required
Detailing - Ductility ------- SDC B SDC C SDC D
Capacity Protection ------- Recommended Required Required
P-Δ Effect ------- ------- Required Required
Minimum Lateral 
Strength ------- Required Required Required

Liquefaction ------- Recommended Required Required

Seismic Design Categories (SDC)
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LRFD 
Flow Chart  
Fig 1.3-1A



Earthquake Protection Systems, Inc. 24

LRFD 
Flow Chart  
Fig 1.3-1B 
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Strategy and Selection of “Key”
Components

♦Global Design Strategies
♦Earthquake Resisting Systems (ERS)
♦Earth quake Resisting Elements (ERE)
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EQ

Plastic
Hinge

Type 1 - Design a ductile substructure with an essentially 
elastic superstructure (i.e., yielding columns)

- 1 concrete substructure
- 1* steel substructure
- 1** concrete filled steel pipe substructure

Type 1 
Design

Global Design Strategies
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Global Design Strategies

EQ
D u ctile
S upers tru cture

Type 2 - Design an essentially elastic substructure with a 
ductile superstructure (i.e., steel girder bridge with 
buckling diagonal members in the end diaphragms.

Type 2 Design
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Global Design Strategies

EQ
Seismic
Isolation

ype 3 - Design an elastic 
superstructure and substructure 
with a fusing (e.g., isolation) 
mechanism at the interface.

Type 3 Design
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Increasing 
performance

Increasing earthquake 
severity

Relative 
cost

d
e

i
h

g

Collapse 
Prevention
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1000  Years
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f

Primary System Seismic Isolation

Isolation 
Applied
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Balanced 
Stiffness 

Recommendation 
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♦ Foundation Modeling Method I is required as a minimum for 
SDC B & C provided foundation is located in Site Class A, 
B, C, or D.  Otherwise, Foundation Modeling Method II is 
required.

♦ Foundation Modeling Method II is required for SDC D. 

Foundation Modeling Method I 
and II
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♦ Case 2: Earthquake Resisting System (ERS) with Abutment 
Contribution.
– Whether presumptive or computed passive pressures are used for design 

as stated in Article 5.2.3.3, backfill in this zone should be controlled by 
specifications, unless the passive pressure considered is less than 70% 
of presumptive passive pressures

Abutment Longitudinal Response 
for SDC D
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Displacement Capacity

♦Implicit Formulas for SDC  B and C
♦Inelastic Pushover Analysis SDC D

Replacement for the ”R” Factor in the 
Force Based Approach
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Displacement Capacity SDC B & C
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Mander’s Concrete 
Model

Displacement Capacity SDC D 
Material Properties

Reinforcing Steel 
Stress-Strain
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Displacement Capacity SDC D 
Moment-Curvature Analysis

y
ε

φ =
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Elastic-Plastic Displacement of a Column
Pushover Analysis for SDC D
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LRFD – Over-strength Capacity Design 
Concepts for SDC C & D Trans. 
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San Fernando 
Earthquake
Route 210/5 Interchange
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Northridge Earthquake
Gavin Canyon Undercrossing – Collapsed Spans
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Eureka Earthquake
Fields Landing Spans 1 and 2 Collapsed 
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Guatemala Earthquakes
Rio Agua Caliente Bridge
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Kocaeli, Turkey Earthquake 
Overpass at Arifiye Junction
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♦

Highway Collapse, Kobe Japan 1995
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Highway Collapse, China 2008
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Lessons Learned in Recent 
Earthquakes

♦Bridge substructures are vulnerable
– Inadequate ductility
– Inadequate deformability

♦Lack of adequate shear strength in substructure 
components and their connections

♦Bridge superstructures have inadequate support 
widths to accommodate displacement demands 
of the substructures
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Increasing 
performance

Increasing earthquake 
severity

Relative 
cost

d
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h
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Global Design Strategies

EQ
Seismic
Isolation

ype 3 - Design an elastic 
superstructure and substructure 
with a fusing (e.g., isolation) 
mechanism at the interface.

Type 3 Design
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Primary Ingredients to a Successful 
Use of an Isolation Strategy for Bridges
♦ A Candidate Bridge
♦ Desired Seismic Performance
♦ Supportive Owner
♦ Informed Designer
♦ Design Specification/Guidelines
♦ Global Model and Analytical Support
♦ Product Evaluation and Testing
♦ Quality Control During Construction
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The Synergy for Increased 
Seismic Protection of Bridges
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Benicia-Martinez Bridge
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Triple Pendulum Bearing
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Triple Pendulum Bearing
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Triple Pendulum Bearing
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Component
Testing Of
Triple Pendulum
Bearing At
MCEER, Suny
Buffalo
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Advantages Of Triple Pendulum Bearing
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TESTING OF TRIPLE PENDULUM BEARING
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Advantages Of Triple Pendulum Bearing
♦ Multi-Stage Adaptive Seismic Isolation Bearing.

♦ Improved Structural Performance at Lower Bearing Cost

♦ Three Seismic isolators Incorporated in a single Triple Pendulum
Bearing

♦ Lowers in-Structural Accelerations and Shears and reduces Bearing 
Displacement.

♦ Single Triple Pendulum Bearing accommodates optimal Structural 
Performance at Service, Design, and Maximum Credible Earthquakes.
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Concluding Remarks
♦ Single Level Hazard for 1000 year return 

period applicable to all regions of the U.S.
♦ Single Performance Criteria for “No Collapse”.
♦ Uniform Hazard Design Spectra using Three 

Point Method with the new AASHTO/USGS 
Maps for the PGA, 0.2 sec, and 1.0 sec.

♦ NEHRP Site Class Spectral Acceleration 
Coefficient.

♦ Partition of Seismic Design Category (SDC) 
into four groups (A,B,C & D) with increasing 
levels of design requirements.
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Concluding Remarks (continued)
♦Identification of Global Design Strategy, an 

Earthquake Resistant System and Load Path.
♦Displacement Based Approach with design factors 

calibrated to prevent collapse.  
♦Using an Isolation Global Design Strategy a No-

Collapse Performance level can be increased to 
Essentially Elastic Performance (i.e. no damage 
level) at a reduced overall construction cost.

♦Both the Guide Specifications and Isolation Guide 
Specifications are Displacement Based Design.
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Concluding Remarks (continued)
♦ Use of closed form equations for implicit 

displacement capacity for SDC B and C.
♦ Pushover Analysis for Displacement Capacity of 

SDC D.
♦ New Seat width equation for SDC D Capacity.
♦ Capacity Protection of all components and joints. 
♦ Steel Superstructure Design Option based on 

Force Reduction Factors including the use of 
ductile end-diaphragms. 

♦ New Isolation/Energy Dissipation Concepts will 
be developed in the future.


