

AECOM

SR 519 Design Build Project

Atlantic Street Ramp Innovative Design

Richard Patterson, PE, SE Michael Bianucci, PE Huanzi Wang, PhD, PE

Design Build - Project Partners

Project Delivery Method – Allowed for Innovations

SR 519 Design Build Project – Atlantic Street Ramp Design

SR 519 Design Build Project – Atlantic Street Ramp Design

Project Schedule

Bid Design – June/July 2008 (6 weeks)

- Begin Final Design October 2008
- Complete All Major Design Elements July 2009
- Open to Traffic RBW Winter 2010, A. Ramp June 2010

RBW – Design Innovations

Preliminary Design	Innovative Approach	Benefit
Steel Superstructure	Concrete Superstructure	Less Maintenance/Lower Cost
Bridge for West Approach	Geofoam Fill	Less Maintenance/Lower Cost
Asymmetrical Piers	Asymmetrical Box/Thickened Web	Better Balanced Structure
6 foot columns with Crash Walls	Stretch Columns to 30 sf	No Crash Walls/Keep RBW Open to Traffic
Steel Superstructure over BNSF	Pre-cambered PS Girders over BNSF	No Future Painting over BNSF/Lower Cost
Ground Improvement and Fill at East Approach	Geofoam Fill	Less Risk/Lower Cost

RBW – Asymmetrical Piers

AECOM

RBW – Pre-Cambered WF Girders

- First Pre-cambered highway girders in Washington
- Limited Structural Depth Girders must following roadway profile

SR 519 Design Build Project – Atlantic Street Ramp Design

RBW – Piers 3 & 4 Columns 15 feet from C.L. BNSF Tracks

Atlantic Ramp – Design Innovations

Preliminary Design	Innovative Approach	Benefit
Steel Superstructure	Concrete Superstructure	Less Maintenance/Lower Cost
12 foot Conventionally Drilled Shafts	10 foot Oscillated Shafts	Less Risk/Faster/Lower Cost
6 foot Standard Columns	7 foot Reduced Moment Section (RMS) Columns	Less EQ Load to Shafts/7 foot Columns/Less Shaft Cost
Standard Fixed Closure at Existing Bridge	Seismic Fuse at Existing Bridge	Less Risk to Existing Bridge/Concrete Superstructure

Bridge Layout

- Post-tensioned, CIP concrete box girder
- ✤ 5 Spans: 177' 221' 241' 276' 211'
- Total Structure length = 1155'
- Tie into WB I90 (north)
- ✤ Tie into EMW (south)

Cross Section

Drilled Shafts

10' drilled shafts (8' at Pier 6)
Constructed using oscillator method

SR 519 Design Build Project – Atlantic Street Ramp Design

Drilled Shafts

Pier 6 construction constraints

Web Design Due to Horizontal PT

Caltrans' Practice

14

1. Check regional bending

2. Stresses induced by shear and regional bending are not additive

Web Design Due to Horizontal PT

NCHRP Report 620

1. Shear resistance to pullout 2. Cracking of concrete cover dc • d.• R Ignore Concrete near Ducts inside face for Regional Bending W = Fu-in/hole s or for "s" < Ø duct Equivalent Beam'c + Øduct Web and Ducts

Web Design Due to Horizontal PT

Web Confinement Reinf. Design

Strut-and-tie method

When sizing the web stirrups, the effect of regional bending should be added to the effect of global flexural and torsion shear

Construction Issues

Shaft anomaly detected with CSL

Repair procedure: 5" cored holes with rebar

Construction Issues

Pier 1 – relocated shaft

SR 519 Design Build Project – Atlantic Street Ramp Design

Construction Issues

Span 5 constructed over Sound Transit LR power line

Seismic Fuse – Introduction

2ft wide and 250 ft long connecting existing I90 off ramp and proposed Atlantic ramp;
different from conventional expansion joint to improve traffic safety, especially for motorcycles;

<u>Seismic Fuse – Design Philosophy</u>

- Service condition combined structures behave as a unit
- Seismic condition before more than 5% seismic demands transferred from new structure to existing structure, combined structure separate and behave independently

Seismic Fuse – Link Modeling

- Linear elastic links at 20ft ± spacing to represent seismic fuse
- Stiffness determined in each directions

Moving Vehicle Loading – Local Analysis

24

Moving Vehicle Loading – Global Analysis

<u>Seismic Fuse – Seismic Analysis</u>

- Inear elastic response spectrum analysis can capture the displacement resulting from inelastic response of a bridge;
- Iink forces are determined by the relative displacement between the two structures;
- Response spectrum input at every 15° due to highly curved geometry
- Foundation stiffness envelop both soft foundation case (liquefied soil + 0.85f'c) and stiff foundation (nonliquefied soil + 1.50f'c) case as per BDM requirements

<u>Seismic Fuse – Capacity</u>

Similar to shear key concept at abutment, seismic fuse is a sacrificial element;

- Recent seismic events have shown that shear key capacity are underestimated if determined by current codes;
- Recent research by UCSD was adopted

$$V_o = \phi_o \bar{V}_n = \frac{\phi_o(\bar{\mu}_f \cos \bar{\alpha} + \sin \bar{\alpha}) A_{vf} \left(\frac{\bar{f}_{sn}}{\bar{f}_y}\right) \bar{f}_y}{1 - \bar{\mu}_f \tan \beta}$$

which is equivalent to 1.48 $A_{vf} f_{ye}$;

<u>Seismic Fuse – Conclusions</u>

More dowels are needed at the end segments to meet the service requirements;

Seismic fuse will break off at 75%± of the current earthquake design magnitude;

With the seismic fuse's "protection", the additional displacement imposed to the existing I-90 off ramp from the proposed Atlantic Ramp can be controlled within 5%;

Reduced Moment Section – Concepts

 Reduce demands to the capacity-protected member – drilled shaft under seismic condition

Maintain continuity between column and drilled shaft under service condition

Different from typical two-way hinges used in California

Reduced Moment Section – Shear Design

Conventionally shear friction method may not valid due to extensive flexural cracks (after UNR report)

SR 519 Design Build Project – Atlantic Street Ramp Design

Reduced Moment Section – Shear Design

Research done by UNR on two-way hinges

$$\label{eq:Vn} \begin{split} & \mathsf{Vn} = \mu(\mathsf{P} + \mathsf{Ts}) \\ & \mathsf{where} \ \mu = \mathsf{shear} \ \mathsf{friction} \ \mathsf{factor}; \\ & \mathsf{P} = \mathsf{applied} \ \mathsf{axial} \ \mathsf{load}; \\ & \mathsf{Ts} = \mathsf{tension} \ \mathsf{force} \ \mathsf{in} \ \mathsf{rebars} \end{split}$$

Diameter Effect on Drilled Shaft Design

Conventional Pile Lateral Analysis

Diameter Effect on Drilled Shaft Design

Large Diameter Drilled Shaft (after Lam I.P.)

AECOM

Diameter Effect on Drilled Shaft Design

Recommendations from Lam I.P.

Apply a scale factor of Diameter/2 to the P-Y curve to make up the modeling defects

SR 519 Design Build Project – Atlantic Street Ramp Design