

More Discussion on the AASHTO Guide Specifications for LRFD Seismic Bridge Design

> Elmer E. Marx, P.E. Alaska DOT&PF

Engineers vs. Non-Engineers

- radians and degrees
- Know the answer first
- The world needs more engineers

Overview

• QC/QA

- Approximate methods
- Displacement spectra
- Substitute structure method
- Cold climate effects

Detailing recommendations

Background

- March 2009 First edition of the AASHTO Guide Specifications for LRFD Seismic Bridge Design
- Primarily a displacement-based approach
- A more direct, rational approach

Seismic Analysis Assumptions

- Linear, elastic model used to model non-linear, plastic bridge
- Luckily, the displacements
 calculated from the elastic
 model are *reasonably* close to
 those of the non-linear model

Figure C3.3-1

Reasonably close displacements...

 Displacement magnification, R_d, for short-period, in-elastic responding structures

EQ Resisting Systems and Elements

Displacement-Based Approach

- Tools currently that allow us to explicitly compare the design displacement demand to the nominal displacement capacity
- Large plastic displacements can be achieved provided that brittle and premature failure modes
 - can be prevented

Displacement Capacity Notation

Displacement Capacity Calculation

- For SDC B and C, closed-form member displacement capacity equations are available
 - SDC B: $\Delta^{L}_{C} = 0.12 H_{o}(-1.27*ln(x)-0.32) > 0.12 H_{o}$ SDC C: $\Delta^{L}_{C} = 0.12 H_{o}(-2.32*ln(x)-1.22) > 0.12 H_{o}$

where:

 $x = \Lambda B_o/H_o$ $\Lambda = fixity factor, pin-fix = 1, fix-fix = 2$ $H_o = contraflexure to plastic hinge distance (FT)$ $B_o = column diameter (FT)$

Displacement Capacity Calculation

- For SDC D, a pushover analysis is required and often requires the following steps:
 - 1.) collect geometric and material data
 - 2.) determine analytic plastic hinge length
 - 3.) generate moment-curvature relationships with axial loads (DL, DL + Overturning, DL Overturning) usually by computer
 - 4.) calculate corresponding lateral load and displacement
 - 5.) determine Overturning forces associated with lateral load
 - 6.) if calculated Overturning is within 10% of assumed continue, otherwise return to step 3
 - 7.) compare lateral displacement demand to displacement capacity
 - 8.) if demand exceeds capacity, revise sections and return to step 1
 - 9.) complete design including capacity protection and ductile detailing

Material Properties for Push-Over

For the SDC D, push-over analysis is required

Displacement Capacity Check

- the use of curvature in design is uncommon
- don't have a good "feel" for curvature values
- desire a method to predict / check the computer results
- could use the closed-form equations to start but they are developed for specific target ductilities

Approximate Methods - ϕ_{vi}

For a rough check of conventional circular reinforced concrete column sections:

 $\phi_{yi} \sim 2.25 * \epsilon_y / 12B_o \sim 1 / 2300B_o$

where:

 ϕ_{yi} = idealized yield curvature (1/IN) B_o = column diameter (FT) ε_y = expected yield strain ~ 0.002345 (IN/IN)

Approximate Methods - Δ_{vi}

For a rough check of conventional circular reinforced concrete column sections:

 $\Delta_{yi} \sim 1/3^* \phi_{yi}^* (12H_o + 0.15^* f_{ye}^* d_b)^2 \sim H_o^2/48B_o$

where:

 $\Delta_{yi} = \text{idealized yield displacement (IN)}$ $H_o = \text{contraflexure to plastic hinge distance (FT)}$ $d_b = \text{diameter of longitudinal column bar (IN)}$ $\phi_{yi} = \text{idealized yield curvature (1/IN)}$ $B_o = \text{column diameter (FT)}$ $f_{ve} = \text{expected yield stress (KSI)}$

Approximate Methods - ϕ_u

 And for a very rough check of conventional circular reinforced concrete column sections:

$$\phi_u = \min (\epsilon_{cu}/c_c, \epsilon_{su}^R/d-c) \sim \epsilon_{su}^R/12B_o$$

where:

 $\phi_{u} = \text{ultimate curvature (1/IN)}$ $\varepsilon_{cu} = \text{ultimate confined concrete strain (1/IN)}$ $\varepsilon_{su}^{R} = \text{reduced ultimate tensile strain (IN/IN)}$ $c_{c} = \text{neutral axis to edge of confined core (IN)}$ d-c = neutral axis to extreme tension bar (IN) $B_{o} = \text{column diameter (FT)}$

Approximate Methods - Δ_{c}^{L}

 And for a very rough check of conventional circular reinforced concrete column sections:

 $\Delta_{C}^{L} \sim \Delta_{yi} + (\phi_{u} - \phi_{yi}) * L_{p} * (12H_{o} - L_{p}/2) \sim H_{o}^{2}/10B_{o}$

where:

 Δ^{L}_{C} = local displacement capacity (IN) H_{o} = contraflexure to plastic hinge distance (FT) L_{p} = analytical plastic hinge length (IN) ϕ_{u} = ultimate curvature (1/IN) ϕ_{yi} = idealized yield curvature (1/IN) B_{o} = column diameter (FT)

What about Double Curvature?

- Column height, H_o, is taken from the maximum moment location to the contraflexure point
- Then add the displacement results for each part

What about Pile/Shaft Extensions?

- In this case, the H_o values will not be of equal length above and below the contraflexure point
- Calculate Δ_{yi} from the point of effective fixity, L_s, for stiffness calculations (typically 3B_o < L_s < 7B_o)
- Calculate Δ_c^{L} from the plastic hinge location, L_M , below the ground line (typically $1B_o < L_M < 3B_o$)

Seismic Displacement Spectra

 The use of the displacement spectra may allow for a quick check of the analysis results

Seismic Displacement Spectra

Recognizing the nearly linear relationship, the EQ deflection for $T_s < T < T_c$ ca be approximated as

 $\Delta^{\rm L}_{\rm D}$ ~ 10 * S_{D1} * T

where:

 $\Delta^{L}_{D} = \text{local displacement demand (IN)}$ $S_{D1} = F_{v} * S_{1}$ $F_{v} = \text{site coefficient for } S_{1}$ $S_{1} = 1.0\text{-sec. period spectral acceleration coefficient}$

= period of vibration of the structure (SEC)

Substitute Structure Method

 Consider the method by which abutment soil resistance is often addressed

Figure 5.2.3.2-1

An effective stiffness is used to provide the passive soil resistance in the seismic model

Substitute Structure Method

• Why not do the same thing for the entire bridge?

Substitute Structure Method

- Advantages
 - insensitive to initial stiffness
 - relatively easy to use
 - different methodology for QC/QA
 - Disadvantages
 - equivalent viscous damping adjustment
 - complex geometry limitations
 - limited utilization to date

Substitute Structure - Example

Substitute Structure - Example

• Solution:

try $\Delta^{L}_{D} = 8''$ and $K_{eff} = 1200K/8'' = 150K/IN$ so $T_{eff} = 2\pi \frac{W_{seismic}}{W_{seismic}} = 1.31 s$ g*K_{eff} and $\mu_D = 8''/2'' = 4$ so $\xi_{eq} = 0.05 + 4(\mu_D - 1) = 0.16$ **9**(πμ_D) and $R_D = (0.05/0.16)^{0.4} = 0.63$ then $\Delta^{L}_{D} = 10*1.31*0.63 = 8.3''$

From CDROM and Eq. 4.3.2-1

Substitute Structure - Example

Substitute Structure - Resources

- Alternately, change F_p by adding or subtracting steel until desired displacement demand is achieved
- M. J. N. Priestley, G. M. Calvi, and M. J. Kowalsky, Displacement-Based Seismic Design of Structures, IUSS Press, Pavia, Italy, 2007.
- Direct Displacement-Based Design

Cold Climate Concerns

Cold Climate Concerns

Research regarding the effects of cold climate

3.)

- 1.) **material mechanics** strength increases, ductility decreases, L_p decreases*
- 2.) **boundary conditions** frozen soil much stiffer then unfrozen soil
 - site coefficient not typically affected but
 may result in higher demands in some
 circumstances

S

Cold Climate – Material Mechanics

- No changes to reinforcing strain limits
- Increase *expected* concrete strength, f'_{ce}, by 40%

- Increase expected yield stress, f_{ye} , and expected tensile strength, f_{ue} , by 10%
- Reduce analytical plastic hinge length, L_p, by 40% *

Kowalsky et al. (2008)

Cold Climate – Boundary Condition

- Frozen soil is up to 100 times more stiff than unfrozen soil
- AKDOT Rule-of-thumb:

stiffness fixity at B_o plastic moment at B_o / 2

 Research recommendations for simplified and refined analyses are forthcoming

Cold Climate – Site Coefficients

- Most cases the stiffer frozen soil is slightly less than the unfrozen response spectra
- For design, use envelope of unfrozen site coefficient spectra and Site Class "B" site coefficient spectra
- In some cases the response spectra can be amplified beyond un-frozen case
- Research ongoing better recommendations are forthcoming for simplified and refined analysis

Detailing

 Distribution of reinforcing steel in pier cap beams

 Primary shear and joint shear reinforcing

Figure 8.13.5.1.1-1 and 2

Detailing - Flexure

Flexural steel distributed traditionally and uniformly

Detailing - Shear

 Calculate conventional shear stirrup spacing, S_v, and joint shear spacing, S_j then find total shear stirrup spacing, S

 $1/S = 1/S_v + 1/S_j$

Summary

- Need for QC / QA
- Use simple tools for verifying results
- Use more than one methodology
- Consider climate effects

Thank You & Questions

STATE OF ALASKA DEPT. OF TRANSPORTATION AND PUBLIC FACILITIES Elmer Marx, P.E. Senior Bridge Engineer

 Bridge Section

 3132 Channel Drive

 P.O. Box 112500

 Juneau, Alaska 99811-2500

 OFFICE 1-907- 465-6941

 FAX
 1-907- 465-6947

 E-MAIL: elmer.marx@alaska.gov