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Engineers vs. Non-Engineers

(.

e radians and degrees

e Know the answer first

 The world needs more engineers



Overview

* QC/ QA
- Approximate methods

| | - Displacement spectra
- Substitute structure method

"« Cold climate effects

etailing recommendations




Background

e March 2009 — First edition of the
AASHTO Guide Specifications for
LRFD Seismic Bridge Design

* Primarily a displacement-based
approach

1 ARSHTD
g Buide SpeciFications For
’ : B LRFD Seismic Bridge Design




Seismic Analysis Assumptions

e Linear, elastic model used to
model non-linear, plastic bridge
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ieasonably close displacements...

* Displacement magnification, R, for short-period,
in-elastic responding structures
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Displacement-Based Approach $

e Tools currently that allow us to
explicitly compare the design abnd B
displacement demand to the

~ nominal displacement capacity

lastic displacements can R
chieved provided that brittle l/ ‘ ‘
mature failure modes
vented
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Displacement Capacity Calculation $»

e For SDC B and C, closed-form member
displacement capacity equations are available

~ SDCB: AL=0.12H,(-1.27*In(x)-0.32)>0.12H,

AL=0.12H.(-2.32*In(x)-1.22)>0.12H,

- x=AB_/H,

A = fixity factor, pin-fix = 1, fix-fix = 2

- = contraflexure to plastic hinge distance (FT)
column diameter (FT)



Displacement Capacity Calculation §g

e For SDC D, a pushover analysis is required and
often requires the following steps:

1.) collect geometric and material data

2.) determine analytic plastic hinge length

3.) generate moment-curvature relationships with axial loads (DL, DL +
\ Overturning, DL - Overturning) usually by computer

\alculate corresponding lateral load and displacement

etermme Overturnmg forces assouated with lateral Ioad

ateral displacement demand to displacement capacity
exceeds capacity, revise sections and return to step 1



Material Properties for Push-Over

e For the SDC D, push-over analysis is required
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Figure 8.4.2-1 Reinforcing Steel Stress-Strain Model

Table §.4.2-1 Stress Properties of Reinforcing Stesl Bars

Notation | Bar Size | ASTM AT06 | ASTM A61F Grade 60

¢ #. 018 60 60 &028.5p e Eeu
1 .j.; 9*‘ 95 Figure 8-4-4_1

Curvature

Figure 8.5-1



Displacement Capacity Check

e the use of curvature in design is uncommon

e don’t have a good “feel” for curvature values

;
%:Le a method to predict / check the computer
esults

use the closed-form equations to start but
e developed for specific target ductilities



Approximate Methods - (I)yi

 For a rough check of conventional circular
reinforced concrete column sections:

/ Oy ™ 2.25*8y/1230~ 1/23008B,

¢,; = idealized yield curvature (1/IN)

B, = column diameter (FT)

= expected yield strain ~ 0.002345 (IN/IN)




Approximate Methods - Ayi

 For a rough check of conventional circular
reinforced concrete column sections:

A, ™ 1/3%,*(12H,+0.15%f, *d,)2 ~ H,2/48B,

ere:
A, = idealized yield displacement (IN)

H, = contraflexure to plastic hinge distance (FT)
- d,, = diameter of longitudinal column bar (IN)
¢ . = idealized yield curvature (1/IN)

_ = column diameter (FT)

expected yield stress (KSI)



Approximate Methods - ¢,

e And for a very rough check of conventional
circular reinforced concrete column sections:

f ¢, = min (e /c. , g,/d-c) ~ ¢ R/12B,

¢, = ultimate curvature (1/IN)

g, = Ultimate confined concrete strain (1/IN)
g, = reduced ultimate tensile strain (IN/IN)
= neutral axis to edge of confined core (IN)
-c = neutral axis to extreme tension bar (IN)
column diameter (FT)




Approximate Methods - A -

e And for a very rough check of conventional
circular reinforced concrete column sections:

| At~ A+ (0, - dy )L *(12H,-L,/2) ~ H,2/10B,

ere:
A'c = local displacement capacity (IN)

. H, = contraflexure to plastic hinge distance (FT)
L, = analytical plastic hinge length (IN)

¢, = ultimate curvature (1/IN)

. = idealized yield curvature (1/IN)

column diameter (FT)



What about Double Curvature?

* Column height, H_, is taken from the maximum
moment location to the contraflexure point

e Then add the displacement results for each part

]
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- Figure 4.11.2-1




What about Pile/Shaft Extensions? &

* In this case, the H_ values will not be of equal
length above and below the contraflexure point

~ * Calculate A, from the point of effective fixity, L,
~ for stiffness calculations (typically 3B, < Ly < 7B)

llate A ' from the plastic hinge location, L,,,
he ground line (typically 1B, < L,, < 3B)






Seismic Displacement Spectra

* The use of the displacement spectra may allow
for a quick check of the analysis results

Responée Spectral Acceleration, Sa

Period, T (seconds)

4.1-1

Displacement Spectra, S

0 S 1.0
To=0.2T, To=—2 Tc=4.0
Sps

Period, T (seconds)

From CDROM or calculate




Seismic Displacement Spectra %
Recognizing the nearly linear relationship, the EQ

deflection for T, < T < T, ca be approximated as

_.f Aty ~10* Sy, * T
where:

o = local displacement demand (IN)
= F,*S,
site coefficient for S,

1.0-sec. period spectral acceleration coefficient
period of vibration of the structure (SEC)



Substitute Structure Method

e Consider the method
by which abutment
soil resistance is often

addressed

——

ic model

e

Approach Slab Active Pressure Zone
/ Ve Tie

Granular
T Drainage [T’K\‘
Material —_—

H.,
}5\ Mfso

Passive Pressure
Zone —

De fi
Seat Abutments

Diaphragm Aburmenrsj

Figure 5.2.3.3-1




nk
Fe /
q /
l"'
.‘.'-'
-‘"
Load
1".'
F
’."
r
e
..‘
J'f’ IGIHI' l'ww
g /
Fp
Keff
A A :'
Displacement j

Figure C3.3-1




Substitute Structure Method

 Advantages
- insensitive to initial stiffness
- relatively easy to use
- different methodology for QC/QA

. adva ntages

- equivalent viscous damping adjustment
- complex geometry limitations
limited utilization to date




Substitute Structure - Example

—

e Q@Given:

-----------

S I

Simple SDOF bridge
F,=V,,=1200 KIPS

= 2500 KIPS

seismic

Displacement

Displacement Spectra, S

0 Sp1 1.0 _
T0=0,2Ts Te= S TC =4.0

Period, T (seconds)

From CDROM




Substitute Structure - Example

g

e Solution:

8”
= 1200K/8”= 150K/IN

2:7 Wseismic =1.31s
8% Kot

e 8”/2” . 4
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and K
i s
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From CDROM and Eq. 4.3.2-1




Substitute Structure - Example

(.

e Second iteration:

1200K |
ty Alp=83" [ —
and K_g = 145K/IN _, ||
‘ J) Teff 3 2:7 Wseismic =1.33s ' 2’“ T 8?3”.c
_ 8™ Kot \ i

u,=8.3"/2"=4.15
g =0.05+4(u,-1)=0.16
9(mp,) P
g 6.3"
/0.16)4=0.63 ; l
835063=847 1 T =
. 'I good check Zﬂod,nseconds) )

From CDROM and Eq. 4.3.2-1



Substitute Structure - Resources $&

* Alternately, change F, by adding or subtracting
steel until desired displacement demand is achieved

~ e M. J. N. Priestley, G. M. Calvi, and M. J. Kowalsky,

~ Displacement-Based Seismic Design of Structures,
| ess, Pavia, Italy, 2007.

< | lacement-Based Design




(Yang 2009)



+ Epicenter (Nov-Feb.)
+ Epicenter (Mar.-Oct )
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N t’
/\/ Frost Depth
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Cold Climate Concerns

e Research regarding the effects of cold climate

1.) material mechanics — strength increases,
ductility decreases, L, decreases™

boundary conditions — frozen soil much stiffer
then unfrozen soil

site coefficient — not typically affected but
may result in higher demands in some
circumstances



Cold Climate — Material

 No changes to reinforcing strain
limits

| * Increase expected concrete
strength, f'__, by 40%
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Cold Climate — Boundary Condition€ss

 Frozen soil is up to 100 times

more stiff than unfrozen soil ’ ; |
) Nsel ]
N
o AKDOT Rule-of-thumb: o N RS
CF B SN - N
stiffness fixity at B, =, L J ]
plastic moment at B,/ 2 F{B I R~ I S

4
I i i === Unfrozen
rch recommendations for s [ | m=tFozen |
ed and refined analyses %o o 100 20 30 40 s0c

Moment (KN-m)

0.3m imposed top deflection
(Yang 2009)



Cold Climate — Site Coefficients

e Most cases the stiffer frozen soil is slightly less than the
unfrozen response spectra

« For design, use envelope of unfrozen site coefficient
spectra and Site Class “B” site coefficient spectra

g | me cases the response spectra can be amplified

: eyond un-frozen case
.

ongoing - better recommendations are
ng for simplified and refined analysis
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Detailing - Flexure

e Flexural steel distributed traditionally and uniformly
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Detailing - Shear

h_

* Calculate conventional shear stirrup spacing, S,,
and joint shear spacing, S; then find total shear
stirrup spacing, S

1/S = 1/S, + 1/,

N

Vertical Stirrups
Insid

u

|| Inside the Joint, A": T P

N / Horizontal J-Bars
|

(LTI

Vertical Stirups w0
Qutside the Joint, A: /

- Figure 8.13.5.1.1-2




Summary

(.

e NeedforQC/ QA

e Use simple tools for verifying results

e Use more than one methodology
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