

Design Strategies for Bridges in Low to Moderate Seismic Zones

Greg Griffin, P.E., S.E. CH2M HILL Boise, Idaho

Western Bridge Engineers' Seminar

September 21, 2009

Objectives

- Develop systematic strategies to ensure adequate seismic performance
- In many instances, seismic performance can assessed using more simplified modeling techniques

Discussion Topics

Performance Goals AASHTO Specifications AASHTO Guide Specifications Bridges in Moderate Seismic Zones BEN4 Ramp Bridge, Las Vegas Lake Mead SB Bridge, Las Vegas East ParkCenter Bridge, Boise

AASHTO Specifications

- Force Based Design
- Performance objective
 - Design Capacity > Elastic Seismic Demand
- Modify Elastic Seismic Demand with "R" factor which is an indicator of ductility

AASHTO Specifications

Guide Specifications

- Displacement Based Design
- Prescribed member ductility factor to estimate displacement capacity

Guide Specifications

 Verify displacement capacity with Moment Curvature Analysis or equation

Interstate 15 Bridges

- BEN4 Ramp Bridge
- Lake Mead SB Bridge

Location

Seismic Design Parameters

- AASHTO Response Spectrum
- Peak bedrock ground acceleration, 0.15g
- Site coefficient, 1.2
- Importance factor, 1.0

Performance Goals

Designed in accordance with AASHTO Standard Specifications, 17th Edition
Elastic Shaft Response
"R" factors
BEN4: R = 3
Lake Mead: R = 5

Seismic Design Strategy

- Strategy 1) Fixed base model and free to translate at abutments.
- Strategy 2) Use a reasonable pier foundation element. Free to translate at abutments.
- Strategy 3) Iterate pier foundation springs and abutment springs.

BEN4 Ramp Bridge

BEN4 Ramp Bridge

- Post tensioned box girder superstructure
- 114 ft, 152 ft and 109 ft spans
- 29 ft wide
- No skew
- Horizontal curve with radius = 1200 ft

Abutments 1 and 2

- Seat abutment, fixed in transverse direction
- Supported on three cast in place drilled shafts (3 ft diameter)

Piers 1 and 2

- 5 ft 6 in octagonal single column
- Approximately 21 ft high columns
- Founded on five cast-in-place drilled shafts (5 ft diameter)

Seismic Model 1 – Long. Mode

Seismic Model 2 – Long. Mode

Seismic Model 3 – Long. Mode

Seismic Model 1 – Trans. Mode

Seismic Model 2 – Trans. Mode

Seismic Model 3 – Trans. Mode

Lake Mead SB Bridge

Lake Mead SB Bridge

- Twin north south bridges. Two separate structures.
- Post tensioned box girder superstructure
- 129 ft 6in and 64 ft 3 in spans
- Varies from 86 ft to 93 ft
- 20 degree skew
- Horizontal tangent alignment

Abutments 1 and 2

- Semi-integral abutment, fixed in transverse direction
- Supported on multiple cast-in-place drilled shafts (3 ft diameter)

Pier 1

- Multiple column bent consisting of 4 ft octagonal columns supported on a 6 ft diameter cast-in-place concrete drilled shaft
- Approximately 20 ft high columns

Seismic Model 1 – Long. Mode

Seismic Model 2 – Long. Mode

Seismic Model 3 – Long. Mode

Seismic Model 1 – Trans. Mode

Seismic Model 2 – Trans. Mode

Seismic Model 3 – Trans. Mode

#6 spiral @ 4"pitch Top & Bottom of column-

and the hard

22- #10 Vert. bars-

Column Reinforcement

- Group 1 Controlled
- 1.39% Steel

East ParkCenter Bridge

Seismic Design Parameters

- AASHTO Response Spectrum
- Peak bedrock ground acceleration, 0.12g
- Site coefficient, 1.0
- Importance factor, 1.0

East ParkCenter Bridge

- Steel plate girder superstructure
- 240 ft and 200 ft spans
- 76 ft wide including sidewalks
- No skew
- Horizontal tangent alignment

Abutment 1

- Seat abutment, fixed in transverse direction
- Supported on two rows of driven steel HP 12x74 piles
- Pedestrian tunnel located in approach fill
- Footing supports one leg of precast concrete tunnel arch

Abutment 2

- Seat abutment, fixed in transverse direction
- Cast-in-place concrete cantilevered wingwalls
- Supported on two rows of driven steel HP 12x74 piles

Pier 1

- 3 ft 6 inch wide by 76 ft long wall
- Approximately 10 ft high
- Founded on 3 rows of driven steel HP12x74 piles

Performance Goals

- Designed in accordance with AASHTO LRFD Bridge Design Specifications, 3rd Edition
- Due to moderate seismicity and steel superstructure, expect 1% reinforcement on effective section
- Do not consider abutments in earthquake resisting system (longitudinal direction)

Performance Goals

- Elastic Pile Response
- R factors
 - Longitudinal, R = 3
 - Transverse, R = 1

Seismic Design Strategy

- Simplified seismic model with superstructure elements and substructure springs
- Model pier using FB Pier
- Use effective wall section properties
- Transverse abutment pile springs determined using LPILE

FB Pier Model

FB Pier Model

#10 verts @12"± all around perimeter

Confinement Reinforcement #3 ties @ 4" #6 horiz bars @ 4"

Wall Reinforcement

- 1.0% Steel on Effective Section
- Strength I Controlled

Recommendations

- In zones of moderate seismicity, design substructure for static forces prior to seismic design.
- Begin seismic modeling with most conservative assumption and include more refined analysis as required.

Use of a substructure model developed for static load case designs can be easily adapted for seismic analysis.

QUESTIONS?

