STRUCTURAL BEHAVIOR OF BARRIER-OVERHANG CONNECTION IN CONCRETE BRIDGES USING AASHTO LRFD METHOD

> Prepared by: Kamal Mirtalaei, PhD, PE, SE Byungik Chang, PhD

Presented by: Byungik Chang, PhD West Texas A&M University

2009 Western Bridge Engineers' Seminar

Sacramento Convention Center, Sacramento, CA, September 21-23, 2009

CONCRETE DECK

AAHTO LRFD (NCHRP-350) BARRIER TEST LEVEL REQUIREMENT

BARRIER DESIGN CHECK PROCESS

(1) SELECT THE BARRIER TEST LEVEL, GEOMETRY AND REINFORCEMENT

(2) CALCULATE BARRIER CRASH RESISTANCE BY LRFD YIELD ANALYSIS:

At Continuous Locations

$$R_{w} = \left(\frac{2}{2L_{c} - L_{t}}\right) \left(8M_{b} + 8M_{w}H + \frac{M_{c}L_{c}^{2}}{H}\right) \qquad L_{c} = \frac{L_{t}}{2} + \sqrt{\left(\frac{L_{t}}{2}\right)^{2} + \frac{8H(M_{b} + M_{w})}{M_{c}}}$$

At Ends or Joint Locations

$$R_{w} = \left(\frac{2}{2L_{c} - L_{t}}\right) \left(M_{b} + M_{w}H + \frac{M_{c}L_{c}^{2}}{H}\right) \qquad L_{c} = \frac{L_{t}}{2} + \sqrt{\left(\frac{L_{t}}{2}\right)^{2} + H\left(\frac{M_{b} + M_{w}}{M_{c}}\right)}$$

 R_w = Transverse resistance of the barrier (kip)

 M_c = Flexural resistance of the barrier about its longitudinal axis (kip-ft/ft)

 M_w = flexural resistance of the barrier about its vertical axis (k-ft/ft)

 M_{b} = additional flexural resistance (in addition to Mw, if any), not applicable here

- L_c = critical length of yield line pattern (ft)
- L_t = longitudinal distribution length (ft)
- H = barrier height (ft)

(3) Compare the Calculated Resistance With the Required LRFD Crash Values (Table) (4) Modify The Design Details if Required

	Railing Test Levels						
Design Forces and Designations	TL-1	TL-2	TL-3	TL-4	TL-5A	TL-5	TL-6
F, Transverse (KIP)	13.5	27	54	54	116	124	175
F _L Longitudinal (KIP)	4.5	LRFD CRASH TEST LEVEL REOUREMENT					58
F _v Vertical (KIP) Down	4.5						80
L, and L _L (FT)	4.0	4.0	4.0	3.5	8.0	8.0	8.0
L _v (FT)	18.0	18.0	18.0	18.0	40.0	40.0	40.0
H _e (min) (IN)	18	20	24	32	40	42	56
Minimum H Height of Rail (IN)	27	27	27	32	40	54	90

BARRIER-DECK OVERHANG INTERACTION

DESIRED LRFD FAILURE SEQUENCE in a Crash Event

First: BARRIER Second: OVERHANG

Overhang Safely Resists the Crash
Barrier is Easier to Repair

OVERHANG DESIGN

The Problem?

OVERHANG CANTILEVER SHOULD ALSO RESIST THE CRASHING FORCES FROM THE BARRIER

M_{u1} , P_u = CRASH FORCE REACTIONS TO OVERHANG

LRFD LOAD COMBINATIONS

LRFD LOAD COMBINATIONS

Extreme Event II for F_t

All Load Factors=1 Barrier: Continuous, Ends (Joints) Location

Lateral Crash Force

Forces:

- Transverse Crash Force F_t
- Longitudinal Crash Force F_L
- Dead loads, FWS
 Overhang is Subject to Moment + Tension

Extreme Event II for F_v

(All Load Factors=1)

Forces:

- Vertical Crash Force, Fv
- Longitudinal Crash Force F_L
- Dead Loads, FWS

Overhang Subject to Moment Only

Verticalal Crash Force

Strength I

P,,,

Wheel Load (LL) Dead Loads (DC) FWS Load (DW) 1.25(DC)+1.5(DW)+1.75(LL) (Overhang Subject to Moment) Conventional Wheel Load Method

Example Design Forces For Overhang (5' Overhang with TL-4 Crash Force)

LOAD COMBINATION	Tensile Force, P _u Kip (per foot)	Bending Moment, M _u K-ft (per foot)
Extreme Event II, F _t , Continuous	3.2	11.1
Extreme Event II, F _t , Ends or Joint	5.2	18.1
Extreme Event II, F _v , Continuous Location	0	8.0
Strength I, Wheel Load Only	0	12.2

OVERHANG LOAD COMBINATION COMPARISON

32" Barrier with TL-4

Note: The First Two Combinations are Associated with Axial Tension F_t

OVERHANG LOAD COMBINATION COMPARISON

Note: The First Two Combinations are Associated with Axial Tension F_t

42" Barrier with TL-4

LRFD Extreme Event With CRASH HORIZONTAL FORCE

Extreme Event II (Horizontal Crash Force), Ft

Overhang Subject to Moment +Tension Moment is Almost Constant Along Overhang A Hunch can not Optimize the Design

LRFD Extreme Event With CRASH VERTICAAL FORCE

OVERHANG IS SUBJECT TO: MOMENT ONLY

COMPARING CRASH FORCE AND WHEEL LOAD MOMENTS

MOMENT-AXIAL TENSION INTERACTION

Computer Analysis (Spreadsheet)

CRITICAL LOAD COMBINATION FOR OVERHANG

- For All Practical Overhang Lengths, the Extreme Event <u>HORIZONTAL CRASH LOADING</u> is Critical
- ENDS OR JOINT Locations are More Critical
- Crash Internal Forces are Almost Constant Along the Overhang
- In Hunched Overhangs the MINIMUM THICKNESS CONTROLS

Overhang Subject to: Constant Moment and Axial Tension

Moments for Extreme Event II with Crash Force, Ft

Needs Almost a Constant Thickness Hunch is not Optimizing the Design

Standard (Traditional) Design Method:

 Design the Overhang for the Wheel Load on the Overhang
 This Design WILL NOT Pass The Crash Forces

Test Level: TL-4 Top Bars: #5@12 Bot. Bars: #5@7.6

SUGGESTED DESIGN METHOD

• Design the Top Bars for Ext. Event Crushing Moment

(by ignoring the Axial Tension)

Provide Nominal Bottom Bars
 This Design Will Pass the LRFD Crash
 Forces for Most Practical Cases

Overhang: 2.5 ft Girder Spacing: 8 ft

LRFD Design **Crash Force at** Joint OK

Test Level: TL-4 Top Bars: #5@4.15 Bot. Bars: #5@9

Overhang: 4 ft Girder Spacing: 8 ft

> Standard Design Based on: Wheel Load Not Good

Test Level: TL-4 Top Bars: #5@8 Bot. Bars: #5@9.7

Overhang: 4 ft Girder Spacing: 8 ft LRFD Design Based on: Crash Force at Joint OK

Test Level: TL-4 Top Bars: #5@3.84 Bot. Bars: #5@9

Overhang: 5 ft Girder Spacing: 11 ft

Standard Design Based on: Wheel Load Not Good

INTERACTION DIAGRAM

Test Level: TL-4 Top Bars: 5@6.52 Bot. Bars: #5@7.6

Overhang: 5 ft Girder Spacing: 11 ft

LRFD Design Based on: Crash Force at Joint OK

Test Level: TL-4 Top Bars: #5@3.38 Bot. Bars: #5@7.6

Overhang: 7 ft Girder Spacing: 13 ft

> Standard Design Based on: Wheel Load Not Good

Test Level: TL-4 Top Bars: #5@6.14 Bot. Bars: #5@7.14

Overhang: 7 ft Girder Spacing: 13 ft

LRFD Design Based on: Crash Force at Joint OK

Test Level: TL-4 Top Bars: #5@3.13 Bot. Bars: #5@7.14 COMPARISON OF REQUIRED OVERHANG TOP BARS AND INTERIOR DECK PANEL TOP BARS

How Much Overhang Top Reinforcement Should We expect ?

Ratio of Reqrd. Overhang to Interior Panel Top Reinforcement

DESIGN SIMPLIFICATION:

1. Find the Max. Moment for Horizontal Crash Extreme Event 2. Design the Top Bars for Overhang Based on This Moment Only (Use Minimum Thickness and Consider no Axial Force) **1. Provide the Nominal Bottom Bars** 2. It was Shown That This Design Will **Satisfy Combined Action of Moment-Axial Force For All Practical Cases**

CONCLUSIONS

- Standard Wheel Load Application WILL NOT Govern the LRFD Design for Overhangs
- Extreme Event Crash (Horizontal) Forces <u>MUST BE</u> Considered To Satisfy LRFD for All Overhang Lengths

CONCLUSIONS

- Almost Constant Moment and Axial Forces Acting Along Overhang
- This Means a Variable Thickness (Hunch) Can not Optimizing the Design
- We Should Expect the Overhang Top Bars to be <u>ABOUT 1.5 to 2.5 TIMES</u> the Top Bars of The Interior Panel Top Reinforcement