2009 Western Bridge Engineers' Seminar

FREMONT BRIDGE In-Depth Inspection of the World's 2nd Longest Steel Tied-Arch Bridge Portland, Oregon

HDR Engineering, Inc.: Tom Howell, PE and Mark Libby, PE Oregon Department of Transportation: Jeff Swanstrom, PE

Agenda

- Background
- Bridge Characteristics
- Site Conditions
- Access Techniques/ Phasing
- Inspection Findings
- ODOT Contracting of Major Bridges

Background

- Constructed 1971 1973
- Record-setting lift
 - Longest: 902-ft througharch section
 - Heaviest: 6,000 tons
 - Highest: 170-ft vertical lift

Background

 Cracked tie girder causes 2-year delay

- I-405, I-5, and US30
- 3-span double-deck steel tied-arch (2,154 ft.)
- 1,255-ft main span

- 175-ft navigation clearance
- **385-ft. to arch**

- 4' x 4' 105 ksi steel arch (ASTM A514)
- 18' x 4' hybrid steel tie girders (ASTM A36, A441, A588)

- 4' x 16"
 spandrel
 columns
- 4-25/16" dia.
 suspender strands

Continuous steel orthotropic upper deck

Stringer-floor beam system with CIP lower deck

Site Conditions

- 113,400 ADT, 11% trucks (I-405)
- Lane Closures (night only)
 8 p.m. to 5 a.m.
- Shoulder Closures (permitted)
 9 a.m. to 3 p.m.
- High winds for daytime work

Site Conditions

- Pre-job Site Visit 8/13/08 facilitated by Region 1 Inspection Team (Bob Schmidt and Stan Gamolo)
- Permitted full rigging and access walk-thru

Access Techniques

- ODOT 50-ft. snooper truck
- 38-ft. bucket truck

Access Techniques

Phase III – Deck Floor Systems

Phase III – Deck Floor Systems

Phase III – Deck Floor Systems

Phase IV – Deck/Tie Girder Exterior

Phase IV – 2 Days

Typical Fatigue Prone and Intersecting Weld Details

- Fracture critical members
 - Tie girders
 - Floor beams*

 Intersecting welds and intermittent piggy back welds are common on tie girder interior

Typical Fatigue Prone, Intersecting Welds and Fracture Critical Details

9

Tack welded splice plates, fill plates, and gusset plates

Typical Fatigue Prone, Intersecting Welds and Fracture Critical Details

Fragmented tie girder splice plates

Typical Fatigue Prone, Intersecting Welds and Fracture Critical Details

Intersecting "Hoan-style" welds in upper suspender assemblies and bolted wind chord connections

Non-destructive testing techniques

- Magnetic particle
- Dye penetrant
- Ultrasonic depth meter

- ODOT's Major Bridge Inspection Program
 - From 1996 to present
 - Nearly 40 major bridge inspections performed by consultants in 2006-2009
 - Limited in-house inspection staff
 - Consultants are an "extension" of ODOT Inspection Staff
 - Emergency repairs/problems averted by major bridge inspection program

- Collaborative approach to bridge inspection
 - <u>Case study</u>: Willamette River (Fremont) Bridge
 - In-depth fracture critical and fatigue prone inspections
 - Problems found in 1996
 - ODOT Fremont Bridge inspection history
 - Overall cooperation between ODOT and Consultant during inspections

Collaborative approach to bridge inspection

- Case Study: Willamette River (Fremont) Bridge
- Access methods for lower deck

Collaborative approach to bridge inspection

- Case Study: Willamette River (Fremont) Bridge
 - Access methods for lower deck
 - Access for future inspections

- Collaborative approach to bridge inspection
 - <u>Case Study</u>: Steel Bridge
- 1910 twin deck vertical lift truss carrying freight, light rail, vehicular, pedestrian
- First-ever in-depth and fracture critical inspection effort
- Multi-agency coordination:
 - ODOT
 - UPRR (bridge owner)
 - TriMet
 - USCG
 - City of Portland
 - Port of Portland

Open For Questions...

