

Sunken Caisson Foundations for South Park Bascule Bridge

Yang Jiang Semyon Treyger

Western Bridge Engineers' Seminar Sacramento, CA September 21-23, 2009

Outline

- 1. Existing Bridge
- 2. Replacement Bridge
- 3. Seismicity and Seismic Design Criteria
- 4. Drilled Shaft vs. Sunken Caisson
- 5. Factors Affected the Decision
- 6. Caisson Construction Sequence
- 7. Design Status
- 8. Questions/Answers

Bridge Location

- Located in South Seattle across Duwamish Waterway.
- Subsurface consists of silty sand fill in upper regions and underlain by very soft to medium stiff clay.
- Soils are contaminated.
- The area has been subjected to numerous earthquakes of magnitude up to 6.8 in the Richter Scale (2001 Nisqually Earthquake)

Existing Bridge

- Double-leaf bascule bridge with truss deck approaches
- Scherzer rolling-lift bridge
- Constructed in 1929-1931
- The bridge was constructed for \$482,000

Existing Bridge Configuration

- Four-lane road with two lanes in each direction
- Substandard 9.5-foot lane width
- Open-grate deck on moveable span

Historic Features

HNTB

National Register of Historic Places (1982)

Control Tower

Guide Track & Rocker

Red-Brick Road

Existing Bridge Foundation

South Bascule Pier

North Bascule Pier

Dense Clay

Leaf Misalignment

Teeth as designed

Teeth after Nisqually Earthquake

Replacement Bridge

- A double-leaf bascule movable bridge
- Wider four 11-foot traffic lanes
- A pedestrian / bicycle pathway on each side
- Architectural features of existing bridge
- State-of-the-art electrical control and mechanical drive
- Solid deck for a better driving surface and drainage treatment
- Minimum disruption after earthquakes

Seismic Parameters

- Two-Level Earthquake Design
 - Operational Earthquake 108 Year Event
 - Design Earthquake 975 Year Event
- Bridge Importance "Essential"
- Seismic Performance Zone 4
- Site Class "E"

Ground Motions

 Site-specific response spectra for two levels of earthquakes were developed by Shannon & Wilson, Inc.

 Spectrum-compatible time histories were developed by Earth Mechanics, Inc.

Governing Seismic Criteria

- AASHTO "LRFD Movable Highway Bridge Design Specifications," 2nd Edition, 2007 with 2008 Interims.
- AASHTO "AASHTO LRFD Bridge Design Specifications," customary U.S. units, 4th Edition, 2007 with 2008 Interims.
- WSDOT "Bridge Design Manual LRFD," May 2008.

Choice of Foundation Type

Courtesy of Malcolm

Drilled Shaft or Sunken Caisson

Caisson Foundation

- Improves seismic performance
- Reduces construction schedule
- Minimizes environmental impacts
- Reduces cost

Drilled Shaft Option

Caisson Option

Caisson Elevation

Seismic Performance

- Created stand-alone models for both caisson and shaft foundations using SAP2000
- Used elasto-plastic springs for soil-structure interactions
- Applied static seismic loads and compare deflections
- Performed push-over analyses
- Compared the predicted seismic performances

Caisson

Shaft

Elasto-Plastic Springs

Passive Pressure Spring

Friction Spring

Analysis Results

	Load Case	Long Disp	Trans Disp	Long Rotation	Trans Rotation
Caiana	Max Long	1.92'	0.27"	(1.06°)	0.16°
Caisson	Max Trans	0.27'	1.54'	0.15°	0.86°
C1 C4	Max Long	4.48'	0.42'	2.37°)	0.25°
Shaft	Max Trans	0.33	1.14'	0.13°	0.23°

Analysis Results

Push-over Curves for Shaft and Caisson Foundations

Seismic Performance

- Caisson option exhibits a stiffer behavior for lateral loading and results in smaller displacements
- Caisson option provides a more balanced behavior in longitudinal and transverse directions
- Caisson option is less likely to have a residual displacement after an earthquake
- Small displacement is better for the machinery during an earthquake and easier for repair after an earthquake

Other Considerations

- Environmental impact
- Economy
- Constructability
- Construction schedule
- Construction risk

Environmental Impact

- Volume of contaminated soils
- Volume of disturbed soils
- Noise during construction
- Vibration during construction
- Footprint of work bridge
- Daily construction equipment usage
- Number of workers commuting to site per day
- Fish considerations
- Endangered species

South Park Bridge - Gross Relative Quantities for North Bascule Foundation

				Caisson Option		Shaft Option	
	Item	Unit	Unit Price	Quantity	Cost	Quantity	Cost
1	Cofferdam	SF	\$ 35	28,520	\$998,000	23,100	\$809,000
2	Caisson Cap / Pile Cap		\$ 450	1,987	\$894,000	1,987	\$894,000
3	Concrete Seal		\$ 225	2,136	\$481,000	613	\$138,000
4	4 Caisson Concrete		\$ 500	6,303	\$3,151,000		\$0
5	5 Shafts Concrete		\$ 300		\$0	3,593	\$1,078,000
6	Shaft Excavation		\$ 450		\$0	3,721	\$1,675,000
7	Caisson Excavation		\$ 100	13,600	\$1,360,000		\$0
8	Placing Permanent Casing for Shaft		\$ 2,500		\$0	16	\$40,000
9	Shaft Casing		\$ 1.25		\$0	4,088,562	\$5,111,000
10	Caisson Cutting Edge Steel		\$ 2.00	266,000	\$532,000		\$0
11	Dredge Well Backfill	CY	\$ 30	5,359	\$161,000		\$0
12	Temporary Trestle and Drill Platform	LS	\$ 937,500			1	\$938,000
13	Temporary Trestle	LS	\$ 525,000	1	\$525,000		\$0
14	Sand Island	CY	\$ 50	5,281	\$264,000		\$0
15	Barge Usage	DAY	\$ 10,000	50	\$500,000		\$0
16	Removal of Contaminated soils	CY	\$ 50	2,136	\$107,000	447	\$22,000
17	Steel Reinforcement	LB	\$ 1.25	1,243,484	\$1,554,000	837,035	\$1,046,000

Total \$10,500,000 \$11,800,000

Construction Schedule

Construction Risks

- Steel prices for steel casing
- Effects of drill vibration on existing bridge
- Caisson may tilt during sinking
- Soil outside caisson may cave during excavation and thus impair existing bridge
- Driving deep cofferdams
- Obstacles during shaft drilling and caisson sinking
- Contractors experience with caisson and large drilled shafts
- Cost escalation for material and labor

Evaluation Matrix

		Caisson		Shaft	
Considerations	Weight	No Weight	Weighted	No Weight	Weighted
1. Seismic Performance	30	9	2.6	5	1.6
2. Environmental Impact	20	7	1.4	6	1.1
3. Cost	20	8	1.5	6	1.1
4. Constructability	10	8	0.8	5	0.5
5. Construction Schedule	10	8	0.8	5	0.5
6. Risk	10	6	0.6	5	0.5
Total	100	45	7.7	33	5.5

Construction Sequence

Water

Soil Profile

Silty Sand

Dense Clay

Construct sheet pile cofferdam

Stage 2:

Dredge the river

Place sand into cofferdam to create a sand island

Stage 3:

Form and cast cutting edge on top of sand island

Construction Sequence

Cast one 15-ft segment

Start dredging and sinking the

Stage 5:

Stage 6:

Stage 7:

Stage 8:

Stage 9:

Stage 10:

Stage 11:

Stage 12:

Stage 13:

Stage 14:

Construction Sequence

Stage 14:

Stage 15:

Continue to dredge and sink caissons to the final elevation

HNTB

Construction Sequence

Stage 16:

Clean bottom and cast concrete seal

Fill dredging wells

Construction Sequence

Stage 17:

Cast distribution cap

Start pier construction

Stage 18:

Remove sheet piles

Stage 19:

Continue pier construction

Design Status

- Completed 70% design
- Working on the final design
- Going to advertisement in January, 2010
- King County applied for TIGER Fund

Current Seismic Model

Springs

Global Model

Conclusion

- Caisson Foundation was selected for
 - ✓ Seismic Performance
 - Environmental impact
 - Economy
 - ✓ Construction Schedule
 - **✓** Construction Risk
- Supported by Value Engineering Team

Acknowledgements

- Time Lane of King County
- Hubert Law of Earth Mechanics, Inc.
- Hisham Sarieddine of Shannon & Wilson, Inc.
- Rich Johnson of HNTB