TIRE DERIVED AGGREGATE BACKFILL FOR RETAINING WALLS

Christopher L. Helstrom Haley and Aldrich, Inc.

James L. Foster Jr., P.E. Quincy Engineering, Inc.

Western Bridge Engineers' Seminar September 21, 2009

Acknowledgements

Stacey Patenaude

Acknowledgements

Why use TDA for retaining wall backfill?

- Low unit weight (0.8 Mg/m³)
- Free draining (k > 1 cm/s)
- Good thermal insulation

 (8 x better than soil)
- 100 tires per m³!

Five full-scale instrumented Walls

- UMaine Test Wall (three trials)
- North abutment Merrymeeting Bridge (Topsham, ME)
- Limestone Run Bridge (Tarrtown, PA)
- Wall 119 (Riverside, CA)
- Wall 207 (Riverside, CA)

Interior of UMaine Test Wall facility

> Orono, ME

UMaine instrumented front wall

Test facility fully loaded

Surcharge blocks

Removable backwall

At-rest stress distribution at 35.9 kPa surcharge

Rotating wall away from backfill

Screw Jacks

Stress at 35.9 kPa surcharge and 0.01H rotation

Effect of rotation on earth pressure coefficient

North Abutment of Merrymeeting Bridge Topsham, ME

- Bridge approach underlain by weak clay
- Existing factor of safety = 1.1
- Excavate upper portion of existing slope
- 14 ft of TDA fill covered by 6 ft of soil
- Used 400,000 tires

Cross section of north abutment

Placement with Dump Truck

Compaction with 10-ton Roller

Pressure Cell Locations North Abutment

Limestone Run Bridge Tarrtown, PA

- Two massive pile supported bridge abutments
- Abutment 1 had a single 10-ft thick layer of TDA overlain by 4.5 ft soil
- Abutment 2 had 10-ft thick TDA layer overlain by 3-ft soil, then second TDA layer with 3-ft thickness at the abutment overlain by 4.5 ft soil

Wall 119 in Riverside, CA

- Freeway widening
- Three sections with TDA and one with soil
- Length: 79 m
- Tires used: 75,000 PTE

Wall 119 cross section

Compacting TDA

Placing soil cover

Wall 119 instrumentation

Wall 207 in Riverside, CA

- Two sections with soil backfill
- Two sections with TDA backfill

Wall 207 Station A

Wall 207 Station B

Wall 207 Station C

Wall 207 Station D

Example of Horizontal Pressure vs. Time

Summary of horizontal stress vs. vertical stress

- Five projects had pressure cells in TDA
- Three projects had pressure cells in soil
- Three projects had negligible wall movement (at rest conditions)
- Three projects expected to have some wall movement away from backfill (potential for active conditions)

Horizontal vs. Vertical Stress (Cells in Soil)

Horizontal vs. Vertical Stress (Cells in TDA, At Rest Sections)

Horizontal vs. Vertical Stress (Cells in TDA, Active Sections)

✓ Wall 207 - TDA Test Sections (Cells in TDA)
 ✓ Tweedie, Active Conditions (Cells in TDA)*

Example of Potential Benefits

Summary of Research Findings

- Current CALTRANS earth pressure coefficient (K = 0.3) applicable to both soil and TDA backfill
- Use equivalent fluid pressure for soil backfill equal to 36 pcf
- Use equivalent fluid pressure for TDA backfill equal to 15 pcf

Western Bridge Engineers' Seminar 2009

ANALYSIS OF TIRE DERIVED AGGREGATE (TDA) AS BACKFILL FOR CALTRANS TYPE 1 RETAINING WALLS

Presented by: James L. Foster, P.E

In cooperation with

Dana N. Humphrey, PH.D., P.E.

Haley and Aldrich, Inc.

Objective

QUINCY

FNGINFERING, INC.

Compare Caltrans Type 1 Concrete Retaining Wall using soil backfill versus tire derived aggregate (TDA) backfill

Determine if additional effort to develop standard plans and specifications for TDA backfilled walls is warranted.

Load Case

ENGINEERING, INC.

Load Case

Calculate Loads

Results – Soil Backfill

Load	De	mand	Allowable per Std Plan B3-1	Load	Demand	Capacity	Demand to Capacity	Minimum D/C (Safety Factor)
Toe Pressure	4	.3 ksf	4.3 ksf	Overturning	76.3 k-ft	161.3 k-ft	2.1	2.0
Load	Demand	Capacity	Demand to Capacity Ratio	Sliding	9.87 k	17.05 k	1.7	1.5
<u>Shear</u>						Soil Backfill D Moment (It	emand vs Capacity ə-in)	
Stem (at base)	9.87 k	13.34 k	1.4		100,000 200,000	300,000 400,000	500,000 600,000	700,000 800,000
Toe	8.93 k	11.99 k	1.3	wn (ff	1		Total M	loment Demand It Max Capacity
Heel	11.40 k	11.61 k	1.0	from Top Do				
<u>Moment</u>				along Stem				
Stem	See	Chart		Distance				
Toe	24.6 k-ft	40.7 k-ft	1.7	20			*	
Heel	44.6 k-ft	44.0 k-ft	1.0			4.5 25	ζΛ (2) 	

Results – TDA Backfill

Toe Pressure3.7 ksf4.3 ksfOverturning61.51 k-ft127.61 k-ft2.12.0LoadDemand to Capacity RatioDemand to Capacity RatioSilding7.45 k14.23 k1.91.5Shear 7.45 k13.34 k1.81.8 1.8 1.9 1.6 1.5 k 1.5 k 1.5 kToe 7.45 k11.99 k1.6 1.5 k 1.3 1.5 k 1.3 1.5 k 1.4 k 1.6 k 1.5 k 1.3 k	Load	De	mand	Allowable per Std Plan B3-1	Load	Demand	Capacity	Demand to Capacity Patio	Minimum D/C (Safety Factor)
LoadDemandCapacity Capacity RatioDemand to Capacity RatioShear	e Pressure	e 3	.7 ksf	4.3 ksf	Overturning	61.51 k-ft	127.61 k-ft	2.1	2.0
ShearImage: Shear	ad	Demand	Capacity	Demand to Capacity Ratio	Sliding	7.45 k	14.23 k	1.9	1.5
Stem (at base) 7.45 k 13.34 k 1.8 Toe 7.64 k 11.99 k 1.6 Heel 8.76 k 11.55 k 1.3 Moment Image: Mark and a state a	<u>ear</u>						TDA Backfill D Moment (Ib	emand vs Capacity o-in)	
Toe 7.64 k 11.99 k 1.6 Heel 8.76 k 11.55 k 1.3 Moment Image: Mark and the state of the sta	at base)	7.45 k	13.34 k	1.8			300,005 400,005		
Heel 8.76 k 11.55 k 1.3 Moment Image: Comparison of the second s	oe	7.64 k	11.99 k	1.6	E state	1		← Total M ▲ Momen	oment Demand t Max Capacity
Moment	eel	8.76 k	11.55 k	1.3	from Top Dc				
	<u>ment</u>				along Stem				
Stem See Chart	em	See	Chart		Distance D				
Toe 21.3 k-ft 40.7 k-ft 1.9	oe	21.3 k-ft	40.7 k-ft	1.9					
Heel 32.7 k-ft 44.0 k-ft 1.3	eel	32.7 k-ft	44.0 k-ft	1.3					

QUINCY ENGINEERING, INC.

Comparison – Soil vs. TDA Backfill

Load	Soil Demand	TDA Demand	Δ (%)
Toe Pressure	4.3	3.7	-16
Overturning	76.3 k-ft	61.5 k-ft	-19
Sliding	9.87 k	7.45 k	-25
<u>Shear</u>			
Stem (at base)	9.87 k	7.45 k	-25
Тое	8.93 k	7.64 k	-14
Heel	11.40 k	8.76 k	-23
<u>Moment</u>			
Stem (at base)	62.4 k-ft	49.8 k-ft	-20
Тое	24.6 k-ft	21.3 k-ft	-13
Heel	44.6 k-ft	32.7 k-ft	-27

QUINCY ENGINEERING, INC.

Optimization

Lower Construction Costs

- Reduced Concrete
- Reduced Rebar
- Reduced Excavation
- Reduced Backfill

Optimization

Use at Marginal Soil Sites

- Lower Toe Pressure
- May Eliminates Need for Pile Footing

Western

Bridge Engineers' Seminar

Conclusions

Effective use for previously considered "waste" tire material.

Reduced construction costs through use of less materials and labor.

Spread footings usable at sites where previously not feasible due to unfavorable soil conditions.

Next Steps

QUINCY FNGINEERING, INC.

Develop design and standardized plans for Reinforced Concrete Type 1T retaining walls with TDA backfill using the LRFD Specifications

Identify and conduct additional studies and tests to further validate the TDA properties and behavior.

Western Bridge Engineers' Seminar 2009

TIRE DERIVED AGGREGATE (TDA) BACKFILL

QUESTIONS

Presented by: Christopher L. Helstrom Haley and Aldrich, Inc.

James L. Foster, P.E

In cooperation with

Stacey M. Patenaude

Dana N. Humphrey, PH.D., P.E.

