Micro Pile and Rock Anchor Wall Construction

Anson McCook and Boris Irahola Western Bridge Engineers Seminar September 2009

Accomplishments

Awards received for this project include,

- "Exceptional Award" in the Transportation Category from the Western Council of Construction Consumers.
- " Capella Award" from the PRSA-CEIC Polaris Awards for the Upper Ortega, SR 74 public outreach program.
- "Partnering Award" in the transportation category.

Historic Culvert

SCOPE

- Culverts were down rated from significant historic culverts to historic culverts.
- Change from viaducts to retaining walls.
- Save time
- Save money
- Improved safety for motorists

Project Challenges

Bedrock and harddecomposed granite ground.
Tight access for equipment.
Appropriate equipment
Environmental constraints
Permit requirements
Construction administration

ENVIRONMENTAL

Environmentally Sensitive Area
Migratory Birds
Arroyo Toad
Fire Safety Plan

Permit Requirements

US Forest Service
Reg. Water Quality
US Army Corps of Engineers
Archeological

Monitoring

Project Solutions

Equipment innovation
 Partnering.
 Environmental constraint management

CALTRANS DESIGN ORTEGA HIGHWAY

MICROPILE RESOURCE

FHWA Micropile Design and Construction Guidelines

eoneupe2 notiounizno0

- Change environmental permit.
- Change Order to change from viaduct to retaining wall.
- Shore culvert.
- Retrofit culvert
- Construct Retaining Walls
- Monitor culvert.

Culvert Retroili

06.17.2008 10:41

MICROPILES

Definition and Description
Construction Techniques & Type
Contract Administration
Testing

MICROPILES BASIC TYPES

Displacement pile
Driven or vibrated into the ground
Displacing the soil laterally during installation
Replacement pile
Placed in a drilled borehole
Replacing excavated ground

MICROPILES EQUIPMENT

MICROPILE DRILLING TECHNIQUES

MICROPILE DRILLING

WHY MICROPILES?

Difficult Access ■ Low Headroom Environmental Constraints Installed in all Soils Types Minimal Disturbance Structures ■ Soil Environment

Uniteel eliqoration

 Proof Test
 Cooperative Venture (Contractor & FTB)

Quitzel eonsmotrel

Verify Conceptual Design Test to Geotechnical Failure

Proof Testing

QA Verification
Service Load Testing
2 or 10%
Random

Rock Anchor Walls

Dulling Solution

Drilling

Rock Anchor Capacity

- Soil characteristics
- Density
- Anchor rod diameter and length
- Hole diameter
- # grout stages and grout pressure

Submittal Reviews

Testing details:
Test setup & loading frame Info.
Test equipment calibration
Bonded tieback dimensions
Theoretical anchor elongation

stimouz

Material Inspection & Release

Anchor Heads
HS rod
Bearing plates
Inspection documents

Centralizers and Spacers

Rock Anchor vs Tieback Testing

2 to 5 % are Tested

100% are tested

 Verification Test
 validates installation and geotech criteria

Proof Test - validates product. nail capability Proof Test - validates product.

Performance test

Types of Rock Anchor Testing

- Verification
- Proof Test
 - Cycle Loading
 - Load Carrying Capacity
 - Correct Unbonded Length
 - Rate of creep stabilizes within specified time

Test Loads:

Loading as specified within the Special Provisions Test load, $M = \pi * D * L_b * \sigma_b * F.S.$ where:

- σ_b = ultimate bond stress
 • provided within General Notes in Plans

D = drilled hole diameter for test nail
L_b = actual bonded length
F.S. = factor of safety for pullout = 1.5

Test Load	Hold Time
AL (0.10T)	Until Stable
.20T	2 min.
.40T	2 min.
.60T	2 min.
.80T	2 min.
1.0 T (Creep Test)	60 min. (10 min. PT)
1.25 T	2 min.
1.50 T	10 min. (2 min. PT)
AL	Until Stable

Be safe around drilling and stressing operations!

Environmental

Water Quality

⇒ Air Quality

