COMPOSITE BEHAVIOR OF PRECAST BRIDGE DECK PANEL SYSTEMS

Sean Sullivan, Ph.D. HNTB September 22, 2009

Objectives of Research Program

- Examine the creep and shrinkage behavior of deck panel systems.
- Look at construction practices and structural details that promote rapid construction.
- Examine horizontal shear behavior in deck panel systems to recommend.

Description of Lab Mockup

- 39.5 ft. simple span with 2 AASHTO Type II Girders, 8 ft spa. C.L. to C.L.
- 5 deck panels 8'-0" x 12'-0" x 0'-8"
- 4 transverse joints 2 MF joints and 2 FF joints
- 2 ft pocket spacing live end
 4 ft pocket spacing dead end

Description of Lab Mockup (Cont.)

- 2 shear connector types
 - □ Hooked Reinforcing Bars girder 1
 - □ New Shear Stud Detail girder 2

Combinations

- 4 ft pocket spacing with Hooked Reinf. Bars
- 2 ft pocket spacing with Hooked Reinf. Bars
- □ 4 ft pocket spacing with Shear Studs
- □ 2 ft pocket spacing with Shear Studs

Constructability Study

- Document all parts of fabrication and construction
 - Construction of the transverse joints
 - Post-tensioning operation and grouting the ducts
 - □ Forming and pouring the haunch
- Duration of each stage, problems encountered, and ease of construction of structural details was well documented

Live Load Testing

2 Test Setups

- Dead End 4 ft pocket spacing
- □ Live End 2 ft pocket spacing
- Axle loads adjacent to transverse joints
- Cyclic Testing

Static Tests

□ Failure mode(s)

□ Cracking patterns

Strain levels in connectors

Durability Testing - Ponding water at transverse joints

- Finite Element Study
 - □ Parameters varied:
 - # connectors,
 - type of connectors,
 - pocket spacing, and
 - distribution among pockets
 - Assessment of the AASHTO LRFD design provisions for horizontal shear transfer.

Constructability Study

Rapid placement of panels possible with use of □ F-F transverse joint configuration Shear studs for shear connectors Problems with bowing of formwork for panels Gaps along M-F joints □ Additional epoxy injected to joints after p.t. operation

Constructability Study (cont.)

- Provide small steel plates for leveling bolts to bear on.
 - Avoid transferring load from deck to the girders through frictional forces at leveling bolt/girder interface.
- Providing uniform pocket spacing allows a single transverse strand pattern to be used in the panels.
 - Less strand used
 - Reduced material cost

steel plate -

Constructability Study (cont.)

- Dayton Richmond Leveling bolt system recommended.
 - □ Need larger blockouts.

Width of steel plate for new shear stud system should be detailed to be ½ in. less than the width of the top flange.

Live Load Testing

Dead End – 4 ft pocket spacing

Dead End – 4 ft pocket spacing

Live End – 2 ft pocket spacing

Comparison of Calculated Capacities and Test Values

	Required	Calculated	Dead End	Live End
Flexure (k-in)	15,500	24,800	23,700	24,500
Vertical Shear (k)	152	226	206	213

- Satisfactory performance
 - □ 2 ft and 4 ft pocket spacing
 - Hooked reinf. bars and new shear stud detail
- Performance of system not affected by cyclic testing.
- Transverse joints Leaking for epoxied MF joints.

Cracking pattern is not dependent on

- Pocket spacing,
- Shear connector type,
- □ Shear connector distribution among the pockets,
- □ Cracks propagated to the load points.

Application of shear friction equation to horizontal shear design for deck panel systems:

 $V_n \leq \min(0.2f_c A_{cv}, 5.5A_{cv})$ where, $A_{cv} = b_v l_v$

<u>QUESTIONS</u> ?