Probabilistic Damage Control Approach (PDCA) to Seismic Design

Abbas M. Tourzani, Amir M. Malek, Sam Ataya, and Mark Mahan Division of Engineering Services California Department of Transportation Sacramento, CA 95816

Topics of Discussion

- Introduction
- Background
- \bigcap Probabilistic Damage Control Approach (PDCA)
- \bullet Examples of PDCA
- \bullet Next Steps
- \bullet **Questions**

Introduction

Bridge Category (Caltrans MTD 20-1):

Important

•

- **-**Life Safety
- -Major Economic Impact
- Local Emergency Plan

• Ordinary (SDC)

Introduction, cont.

 $\mathbf G$ Seismic Performance Criteria (*Caltrans*):

•*Functionality*

- Ordinary Bridges.. Damage= repairable
- Important Bridges……………Damage=Minimal
- *Safety*

 \bullet

- Ordinary Bridges. Damage= Significant
- \blacksquare Important Bridges……………Damage= Repairable

Background

Conventional Techniques for Safety and Functionality

- • Strain Reduction (Reducing ultimate strains of concrete and steel to limit damages)
- • Displacement Ductility Reduction (Reducing target displacement ductility demands to smaller values to limit damages)

Proposed Technique

 \Box

 \Box

•**Probabilistic Damage Control Approach (PDCA)**

Probabilistic Damage Control Approach (PDCA)

Highlights:

•

- Acceptable level of damage under each excitation depends on probability of occurrence of the earthquake, that is return period (T) of the earthquake
- Expected Damages at each level of demand can be quantified with Damage Index
- *-* Level of Damage (*Minimal/Repairable/Significant)* can be related to Damage Index

Damage Index

Level of damage in a column at displacement of "Δ**" is represented by Damage Index (DI):**

$$
DI = \frac{\Delta_D - \Delta_Y}{\Delta_{UC} - \Delta_Y}
$$

DI=0, No damage (Elastic) DI=1, Extensive Damage (at Collapse)

Damage Index, Cont.

Capacity of columns designed based on current requirements for confinement and other considerations is assumed at *DI*~0.5, however tests have shown columns can withstand larger displacements (*DI*~1)

Design Damage Index (DI) Values

The acceptable level of damage index under each probabilistic ARS curve is design specific, for example it can be:

T=710 years* (10% chance of happening in 75 year life): *DI*=0.5

T=1460 Years* (5% chance of happening in 75 year life): *DI*=0.75

Note: each of these events are represented by an ARS curve

Typical ARS (75-year exposure time)

PDCA Design Philosophy

Acceptable level of DI depends on return period of ARS curve used, and SDC requirement of 2-2-4 is modified as:

$$
\Delta_D \le \Delta_Y + DI(\Delta_{UC} - \Delta_Y)
$$

PDCA Advantages

Designer can increase confinement to reduce DI and satisfy design requirements.

Applicable to all parties involved in a project:

Bridge Designers Bridge Owners (State and Local Agencies) Bridge Maintenance personnel (Repair/retrofit) Public

Example # 1

¾The superstructure of the bridge consists of a sixcell post-tensioned box girder supported on drilled pile-shaft

¾Caltrans' site specific deterministic ARS curve and also a family of probabilistic ARS curves are used. ¾The performance push-over (transverse analysis) indicates that two plastic hinges form at top of columns.

¾Comparison of ultimate displacement capacity (Δ*uc*) and demand (D_D) shows adequate ductility in the transverse direction for this particular bent. ¾The plastic component of the displacement capacity is based on an effective length of column defined from the Contraflexure point or zero moment to the center the upper plastic hinge.

¾The longitudinal bars in the column consists of 36 No. 11 bars, the confinement consists of No. 8 hoops @ 4 inches spacing in the plastic hinge region. The plastic moment and curvature were calculated using sectional fiber analysis software >The over-turning effects increased the axial load from 2034 kips to 2911 kips in the compression column; however, the increase in plastic moment was only 8.4%. There is additional reserved capacity in the cap beam to easily meet the higher column moments.

COLUMN PROPERTIES PDCA

Probabilistic Acceleration Response Spectra

Safety Evaluation:

The bridge is evaluated for safety when exposed to deterministic design earthquake. Following is summary of displacement demand and capacity calculations for safety evaluation of Bent 2.

 $\Delta_{_{\rm UC}}$ = 14.88 $\,$ + 4.22 $\,$ = 19.10" $\,$ $\,$ $\,$ $\Delta_{_{\rm D}}$ = 9.90" $\,$ $\,$ $\,$ $\,$ $\,$ OK $\Delta_{_{\rm P}}$ = $\Theta_{_{\rm P}}$ * (L $_{\rm 1} -$ I $_{\rm P}$ /2) = 0.0670x(20 $\,$ ft (12) $\,$ – 35.83" $\,$ /2) = 14.88" $\,$ θ $_{\sf p}$ = 35.83" x0.00187 $\,$ = 0.0670 $\,$ radians $\Theta_{_{\rm p}}= \mathsf{I}_{_{\rm p}} \phi_{_{\rm p}},$ and $\mathsf{I}_{_{\rm p}}$ is the plastic curvature capacity at top of column from sectional analysis. ${\mathsf I}_{\sf p}$ = 0.08x20x12 $\;\;$ + 10.2x1.63 $\;\;$ = 35.83" I_P = Length of plastic hinge = 0.08L $_1$ + 10.2d $_b$ $\Delta_{_{\text{\textbf{UC}}}}$ = $\Delta_{_{\text{\textbf{P}}}}$ + $\Delta_{_{\text{\textbf{y}}}}$ for the plastic hinge 9.90 inches 308.40.75x4064 k $\Delta_{\text{D}} = \frac{\text{F}}{\text{k}} = \frac{0.75 \times 4064}{308.4}$ From CSDC (Mean) ARS curve is calculated as 0.75g. 1.16 sec onds 308.4 $\frac{\mathsf{W}}{\mathsf{K}_1}$ = 0.32 $\sqrt{\frac{4064}{308.4}}$ $T = 0.32$ $\frac{W}{W} = 0.32$ $\frac{4064}{W} =$ 308.4 k/in 4.22" 0.32x4064 kips Δ $\frac{0.32W}{0.32W}$
Yield Displaceme nt = $\frac{0.32W}{0.5W}$ k_i = initial slope = $\frac{$ Lateral Force ii y_i = initial slope = $\frac{1}{i}$ $\frac{y_i}{y_i}$ = $\frac{y_i$ i

 $\frac{0.38}{19.10}$ - 4.22 = 0.38 < 0.5 \therefore OK 9.90 – 4.22 Δ $_{\sf UC}$ $\;$ \sim Δ Δ $_{\cap}$ Δ DI Damage Index y $\frac{D}{D_0} - \Delta_y = \frac{9.90 - 4.22}{19.10 - 4.22} = 0.38 < 0.5$. $\frac{\Delta_y}{-\Delta_y} = \frac{9.90}{19.10}$ $=\frac{\Delta_D}{\Delta}$

Functionality Evaluation:

The bridge is evaluated for functionality when exposed to the family of probabilistic ARS curves. The Bent # 2 sample calculations of displacement demand and capacity for probabilistic ARS Curve with 10% probability of exceedance is summarized as:

$$
k_i = initial slope = \frac{Lateral Force}{Yield Displacement} = \frac{0.32g}{\Delta_y} = \frac{0.32x4067 \text{ kips}}{4.22^{\text{m}}} = 308.4 \text{ k/in}
$$

\n
$$
T = 0.32 \sqrt{\frac{W}{k_i}} = 0.32 \sqrt{\frac{4067}{308.4}} = 1.16 \text{ sec on/s}
$$

\nFrom 10% ARS Curve spectral acceleration is calculated as 0.60g.
\n
$$
\Delta_D = \frac{F}{k_i} = \frac{0.60x4064}{308.4} = 7.91 \text{ inches}
$$

\nSimilarly, $\Delta_{UC} = \Delta_P + \Delta_y$
\n
$$
\Delta_{UC} = 14.88 + 4.22 = 19.10^{\text{m}} > \Delta_D = 7.91^{\text{m}} \therefore OK
$$

\n
$$
\frac{\text{Damage Index}}{\Delta_{UC} - \Delta_y} = \frac{7.91 - 4.22}{19.10 - 4.22} = 0.25
$$

DAMAGE INDEX

Therefore, the bridge complies with limits proposed for DI values under different probabilistic excitations.

6 Foot Column Diameter/CIDH Test Specimen (UCLA)

Probabilistic Acceleration Response Spectra San-Francisco the Bay Area Region Marina

Analytical Study of 6 Foot Circular Column/CIDH Assuming *10% f'c Ag Axial Load*

DAMAGE INDEX

Next Steps…

- \Box Calibration of *DI* using data from tests and post-event observations
- •Development of a reliability index covering damage and probabilistic demand
- \bigcap Local vs. Global *DI* (redundancy)
- $\mathbf \bullet$ Extension of *DI* application to repair projects in order to facilitate communication between maintenance and design

