NEESR-SG-0530737

Seismic Simulation and Design of Bridge Columns under Combined Actions, and Implications on System Response

University of Nevada, Reno University of California, Los Angeles University of Illinois, Champaign-Urbana Missouri University of Science and Technology Washington University, St. Louis University of Houston George Washington University

Great Team!

University of Nevada, Reno David Sanders (Project PI)

- Missouri University of Science and Technology
 - Abdeldjelil "DJ" Belarbi (co-PI)
- University of Illinois-Champaign-Urbana
 - Amr Elnashai (co-PI)
 - Reginald DesRoches (GaTech)
- George Washington University
 - Pedro Silva

- University of California, Los Angeles
 - Jian Zhang (co-PI)
- Washington University, St. Louis
 - Shirley Dyke (co-PI)
- University of Mexico
 - Sergio Alcocer
- University of Houston
 - Ashraf Ayoub

Project NEESR-SG-0530737

In order to address the complex behavior of bridge members under combined loadings and its impact on system response, a comprehensive project sponsored by the National Science Foundation was established in 2006

M-V-T Interactions

Many Potential Parameters

- **Cross-section** *Circle, Interlocking Spiral, Square*
- Column aspect ratio moment/shear ratio
- **Torsion/shear ratio** high and low torsion
- Level of axial loads
- Level of detailing for high and moderate seismicity
- Bidirectional bending moment non-circular crosssections
- Type of Loading Slow Cyclic, Pseudo-dynamic and shake table/dynamic

Results – Cover Spalling with Increasing T/M Ratio Spiral Ratio of 0.73%

Increase in Torsional Moment

FHWA Bridge #4 – Structural Details

COMBINED ACTIONS ON BRIDGE EARTHQUAKE RESPONSE

FHWA Bridge #8 – Structural Details

Analytical Program

- Development Inelastic Models for RC Sections under Combined Loading
- Modeling of Specimens
 - Complex and Simplified Tools
- Parametric Studies
- Bridge System Analysis
- Development of Seismic Design Criteria

Experimental Program

- Experimental investigation of columns under multidirectional loadings with varying levels of axial force and axial-flexure interaction ratios linked to analysis.
- Slow cyclic tests at MS&T.
- Pseudo-dynamic tests at UIUC
- Dynamic tests at UNR
- Integrated bridge test managed by George Washington and MS&T, tested at UIUC

Study on the Seismic Performance of Bridge Reinforced Concrete Columns under Combined Actions

@ University of Nevada, Reno

Dr. David H. Sanders, Professor Juan G. Arias-Acosta, Graduate Student

September 2009

UNR Previous Experiments

- 1:3 Scale
- φ=16", L=72"
- 20 # 4 (ρ=0.020)
- #2 @ 1.5" (spiral)
- Axial load: 80 kips
- Increasing El Centro (1/3, 2/3, 1, 1.5, 2, 2.5, 3, 3.5, 4).
- CALTRANS (1990's design procedure).

Introduction

Combined loadings (axial, shear, bending and torsion) can have significant effects on the force and deformation capacity of reinforced concrete bridge columns (RCC); that in turn can result in unexpected large deformations and extensive damage

Work at UNR

The work at UNR focuses on the development of analysis and shaking table tests of large-scale models of bridge columns subjected to different levels of biaxial, torsion and vertical loads through real time earthquake motions

Test	Shape Diameter (in)	Scale	Ht (in)	Biaxial Bending	Torsion	Axial & PD-effect
Phase I	- 16	1:3	72	✓	Low	×
	- 16	1:3	72	\checkmark	High	×
	12x17.5	1:4	72	✓	Low	×
	12x17.5	1:4	72	\checkmark	High	×
Phase II	- 16	1:3	72	\checkmark	Low	✓
	- 16	1:3	72	\checkmark	High	✓
	12x17.5	1:4	72	\checkmark	Low	✓
	12x17.5	1:4	72	✓	High	✓

Bidirectional Mass Platform (Phase I)

Bidirectional Mass Platform (Without Axial load)

Bidirectional Mass Platform (Assembling sequence)

University of Nevada, Reno

Bidirectional Mass Platform (Phase II)

Bidirectional Mass Platform (With Axial load)

Circular Columns (Design Parameters)

Biaxial Moment – Curvature

Circular Columns P=0					
Properties Radial					
φy	0.00034				
My (k-in)	1566				
φu	0.00584				
Mu (k-in)	1973				
μΔ	8.29				
Vu (kip)	27.41				
Tcr (k-in)	230				
Tu (k-in)	708				

Circular Columns P=80 kip					
Properties	Radial				
фу	0.00034				
My (k-in)	1884				
φu	0.00492				
Mu (k-in)	2194				
μΔ	7.06				
Vu (kip)	30.56				
Tcr (k-in)	354				
Tu (k-in)	780				

Circular Columns Details

Circular Columns Details

Material Properties

т

Days	Concrete Compressive Strength [ksi]					
	Circ	ular	Interlocking			
	Footing	Column	Footing	Column		
28	4.79	4.1	5.22	3.92		

Steel Properties	No.3	No.4	W2.9	W5.0
Yield stress [ksi]	61.4	65.0	58.1	58.1
Yield strain	0.0022	0.0023	0.0024	0.0024
Strain at hardening	0.012	0.0075	N.A	N.A
Peak stress [ksi]	95.6	103.3	78.5	78.5
Strain at peak	0.124	0.115	0.115	0.126
Fracture stress [ksi]	81.4	99.7	77.9	70.2
Fracture strain	0.195	0.151	0.154	0.138

Double Interlocking Columns (Design Parameters)

Biaxial Moment – Curvature

Interlocking Columns P=0						
Properties Short Dim. Long D						
φy	0.0004	0.0004				
My (k-in)	616.3	1175				
φu	0.004	0.004				
Mu (k-in)	785	1615				
μΔ	6.13	4.45				
Vu (kip)	216	444				

Double Interlocking Columns Details

Analytical Models (OpenSees)

Analytical model (OpenSees)

Mass=80 kips Axial load 80 Kips Torsional stiffness 0.2JG

Biaxial motions El Centro: 0.33, 0.66, 1.0, 1.5, 2.0, 2.5, 3.0 Sylmar: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 Kobe: 0.3, 0.6, 0.9, 1.2, 1.5, 1.8

Mendocino (Petrolia): 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 Northridge (Sepulveda): 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4

Model 1: Single Column, without axial load, without PD-effect. Model 2: Inertial frame, with unbonded tendon, with PD-effect.

Mass Distribution (Plan view)

Analysis Results (Circular Column P=0)

Petrolia at Mendocino, Earthquake (1992) Scaled to have a Hazard level 2% in 50 years

Max acceleration in X 0.8 g Max acceleration in Y 0.98 g

Earthquake	Load	Max Top Displ. (cm)		Max Base Shear. (kN)		Max. Base Moments. (kN-m)			T/Mx	T/My		
	Case	X	Y	Comp	X	Y	Comp	Мх	Му	т		
Mendocino	1	3.17	8.15	8.19	19.0	28.8	32.3	2791.2	1896.6	55.4	0.02	0.03
Petrolia x1.4	2	8.05	8.05	8.09	18.9	28.0	32.4	2802.7	1888.2	596.6	0.21	0.32
	3	8.05	8.05	8.09	19.2	28.0	32.5	2796.6	1915.2	430.3	0.15	0.22
	4	3.13	8.08	8.12	18.9	28.0	32.4	2803.4	1889.9	493.4	0.18	0.26
	5	3.22	8.00	8.04	19.1	27.9	32.5	2795.4	1912.3	457.5	0.16	0.24

Analysis (Petrolia @ Mendocino-Case1)

COMBINED ACTIONS ON BRIDGE EARTHQUAKE RESPONSE

Column C1- Front View

Column C1- Top View

Column C1- Links

Column C1- Mass Distribution

Column C1 – Test Protocol

Run	x Petrolia	Ace. in X (g)	Acc. in Y (g)
1	0.1	0.105	0.050
2	0.2	0.191	0.106
3	0.4	0.444	0.255
4	0.6	0.588	0.381
5	0.8	0.667	0.466
6	1.0	0.692	0.607
7	1.2	0.806	0.752
8	1.4	0.887	0.863
9	1.6	0.981	1.039
10	1.8	1.098	1.175

Signals of small amplitude white noise were applied between runs

Petrolia Earthquake (Column C1)

Petrolia at Mendocino PET90 1.5 1.0 Acceleration (g) 0.5 0.0 140 80 160 100 120 40 60 80 220 20 άO -0.5 -1.0 -1.5 Time (s)

Column C1 – Measured Dynamic Properties

Run	Period in X (s)	Period in Y (s)	Kx (kip/ir)	Ky (kip/ir)
WN1	0.62	0.61	2054	2122
WN2	0.63	0.64	1989	1928
WN3	0.69	0.69	1658	1658
WN4	0.80	0.77	1234	1332
WN5	0.81	0.81	1203	1203
WN6	0.86	0.88	1068	1020
WN7	0.94	0.92	894	933
WN8	0.98	0.93	822	913
WN9	1.05	1.01	716	774
WN1	1.31	1.10	460	653
WN1	1.38	1.32	415	453

Column C1 – Last Run

Column C1 – Damage Progression

Flexural cracks

Inclined cracks

Concrete Spalling

Failure

Column C1 – Failure

Column C1 - Performance

Run	x Petrolia	Drift in X (%)	Drift: in Y (%)	Performance	
1 to 3	0.1 - 0.4	0.59 – 2.58	0.36 - 1.13	Flexural Cracks	
4	0.6	2.37	1.02	First inclined Cracks	
5	0.8	3.47	1.51	First Spalling	
6 to 8	1.0 – 1.4	5.3 – 10.64	2.51 – 4.46	Extension of Cracks and Spalling	
9	1.6	13.78	6.0	Spiral and long. Bars Visible	
10	1.8	17.3	8.4	Flexural Failure (Bar Buckling)	

Test Specimen C1

Earthq	uake	Rel. disp. in X (in)	Rel. disp. in Y (in)	Force in X (kips)	Force in Y (kips)
0.4xPET	MAX	-0.8	-0.459	22.35	12.59
	MIN	0.983	0.386	-26	-13.02
0.6xPET	MAX	-0.813	-0.504	20.98	11.31
	MIN	0.983	0.367	-23.21	-11.17
0.8xPET	MAX	1.427	0.508	25.09	11.06
	MIN	-1.159	-0.696	-18.55	-13.07
1.0xPET	MAX	1.511	1.905	27.28	10.88
	MIN	-3.82	-0.619	-14.75	-14.93
1.6xPET	MAX	3.424	1.188	28.55	10.14
	MIN	-2.578	-1.578	-15.17	-16.62
1.8xPET	MAX	-2.342	6.142	27.9	11.07
	MIN	-12.47	1.292	-16.14	-16.72

C1- Cumulative Histories in Long. dir.

C1- Cumulative Histories in Lat. dir.

C1- Displacement Orbit

C1- Behavior (Analytic vs. Test)

Hysteretic behavior in long. dir.

Column C2- Mass Distribution

Column C2 – Test Protocol

Rut	x Petrolia	Acc. in X (g)	Acc, in Y (g)
1	0.1	0.074	0.055
2	0.2	0.152	0.094
3	0.4	0.274	0.186
4	0.6	0.540	0.299
5	0.8	0.680	0.427
6	1.0	0.776	0.553
7	1.2	0.817	0.689
8	1.4	0.878	0.849
9	1.6	0.954	0.989
10	1.8	1.068	1.137
11	2.0	1.345	1.353

Signals of small amplitude white noise were applied between runs

Petrolia Earthquake (Column C2)

Column C2 – Last Run

Column C2 – Damage Progression

Flexural cracks

nclined cracks

Concrete Spalling

Failure

Column C2 – Failure Mode

Column C2 - Performance

Ren	x Petrolia	Drift in X (%)	Drift: in Y (%)	Performance
1 to 3	0.1 - 0.4	0.23 – 0.87	0.20 - 0.48	Flexural Cracks
4	0.6	1.31	0.70	First inclined Cracks
6	1.0	2.62	1.24	First Spalling
7	1.2	3.3	1.6	Extension of Cracks and Spalling
8 - 10	1.4 – 1.8	4.0 - 16.2	1.8 - 7.4	Spiral and long. Bars Visible
11	2.0	20.2	10.2	Flexural Failure (Bar Buckling, spiral and long. Bars rupture)

Test Specimen C2

Earthq	uake	Rel. disp. in X (in)	Rel. disp. in Y (in)	Force in X (kips)	Force in Y (kips)
0.4xPET	MAX	0.454	0.344	17.74	10.04
	MIN	-0.624	-0.145	-23.87	-8.54
0.6xPET	MAX	0.761	0.491	21.70	10.77
	MIN	-0.945	-0.261	-24.99	-10.12
1.0xPET	MAX	1.503	0.891	26.41	9.84
	MIN	-1.883	-0.587	-15.36	-13.46
1.2xPET	MAX	1.857	1.144	27.44	10.13
	MIN	-2.379	-0.730	-16.18	-14.66
1.8xPET	MAX	11.643	5.339	28.11	12.13
	MIN	2.572	1.064	-17.25	-16.45
2.0xPET	MAX	14.508	7.330	25.17	11.42
	MIN	3.752	1.725	-13.01	-13.22

C2- Cumulative Histories in Long. dir.

Relative displacement long. dir Hysteretic behavior in long. dir. 16 406 Displacement (mm) 356 14 -127 127 254 381 Ω 12 305 30 134 10 254 Displacement (mm) Displacement (in) 20 89 203 8 Force (Kips) 10 45 Force (kN) 6 152 0 O 102 4 -10 -45 51 2 -20 -89 0 0 -30 -134 500 -51 300 -2 400 -5 10 15 5 0 -4 -102 Time (s) Displacement (in)

C2- Cumulative Histories in Lat. dir.

C2- Displacement Orbit

C2- Behavior (Analytic vs. Test)

Displacement history in long. dir.

Hysteretic behavior in long. dir.

C1-C2 Force-Displacement Envelopes

C1-C2 Force-Displacement Envelopes

• The new inertial mass system to be used on bidirectional shake table tests at UNR represent a significant advance in the simulation of single RCC under simultaneous loads induced by real time earthquake motions.

Preliminary analytical and experimental results found at UNR and by researchers from other institutions involved in the project have shown that the interaction between loads have a significant effect in the capacity of reinforced concrete bridge columns under combined seismic loads.

University of Houston Contribution

- Development of a new fiber beam-column element with combined Shear/Bending/Axial Interaction
- Model based on rotating crack concept with biaxial strength envelope for concrete
 - Model accounts for Cyclic & Dynamic/Seismic effects
- Model was calibrated and used for simulation of RC specimens under static and dynamic loads

Extension of RC Fiber Beams to Account for Shear Effects

- Adopt a Timoshenko Beam Formulation with Shear Deformations
 - Impose Equilibrium in Transverse Direction to Determine Concrete Lateral Strain
 - Rotate Stresses to Principal (Crack) Directions
 - Use Concrete Biaxial Constitutive Models

UIUC Reinforced Concrete Short Column

UIUC Focus

Shear-flexural-axial interaction particularly under the presence of high vertical acceleration

Large scale testing - completed

- Pseudo dynamic tests without and with vertical ground motion: 2 specimens
- Cyclic load tests under different axial load levels: 2 specimens

Small scale testing

 Numerous small scale piers to be used to further explore moment-axial-shear interaction and load path effects: ongoing

Pseudo Dynamic Tests

Configuration and control

- Prototype: FHWA design example 4 (1996)
- Single ¹/₂ scale experimental pier
- Analytical model of remaining 3 piers and bridge deck

Input

- Pier 1: Horizontal ground motion
- Pier 2: Combined horizontal and vertical ground motion

Test Results

- Vertical ground motion significantly increased the variation of axial load
 - Axial load ranged from -3.5% to 20%
- Significant increases in shear strains (spiral) and diagonal cracking were observed when including the vertical component
- Strong coupling of shear force demand and axial load was observed

Configuration and control

- Diameter: 24 in, Height: 102 in
- Mixed mode control
 - Displacement control: lateral displacement and rotation
 - Force control: axial force

Input

- Cyclic lateral displacement and zero rotation (double bending)
- Constant axial force
 - Pier 3: tension force of 50 kips
 - Pier 4: Compression force of 250kips

Test Results

- Strong coupling between shear force demand and axial load
- Pier with moderate tension developed ductile shear failure
- Degradation of shear capacity dominated response of pier with compression

Cyclic Testing

Work in Progress

- Numerous small scale piers will be used to further investigate shear-flexure-axial interaction
- Coupling of load path (lateral and vertical) with shear capacity and demand will be investigated
- Tests will be performed using NEES@UIUC 1/5 scale testing facility

UCLA

- Conducting Global Modeling of Structures
- Development of a robust ABAQUS user element capturing the major effects observed in the realistic RC column responses, including the damage prediction and shear-flexural interaction (under constant axial force)
- Validation of the user element with 13 static cyclic pushover and 2 dynamic shake table tests has been completed.

Hybrid Simulation George Washington – M S&T

State.

Hybrid simulation: **Integration of** analysis and experiment - Simulated experimentally: Three out of eight columns using LBCBs with **OpenSees** The proposed prototype bridge is the eighth in a series of seismic design examples developed for FHWA with the earthquake site in Washington

Virtual Experiments...

Virtual Experiments...

