
Reducing the CO₂ of Concrete Mixtures for Bridges.

September 21, 2009 Tony Kojundic, FACI Director, Silica Fume Association Business Manager, Elkem Materials Sustainable design; to meet the needs of the present without compromising the ability of future generations to meet their needs.

Portland Cement Impact 1# CO₂ emission / 1# Cement produced.

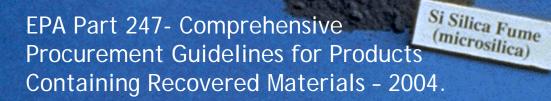
100

United States CO₂ Emissions by Sector (2002)

Source: Climate Analysis Indicators Tool (CAIT) Version 3.0. (Washington, DC: World Resources Institute, 2006).

Concrete: Part of a sustainable future.

- Besides water, the most commonly used material (by vol.) on earth.
- Service-life & life-cycle advantage over other construction materials; reduced maintenance.
- Cement production is responsible for <u>1-3%</u> of US greenhouse gases emissions.
- Concrete reabsorbs most of the CO₂ emitted by calcination during cement production over the structures life, or shortly after demolition.
- 20-70% energy from alternative fuels consumer waste & by-products.
- 33% less emissions since '75, and Industry goal to reduce another 10% by '20.


(PCA)

Concrete: Part of a sustainable future.

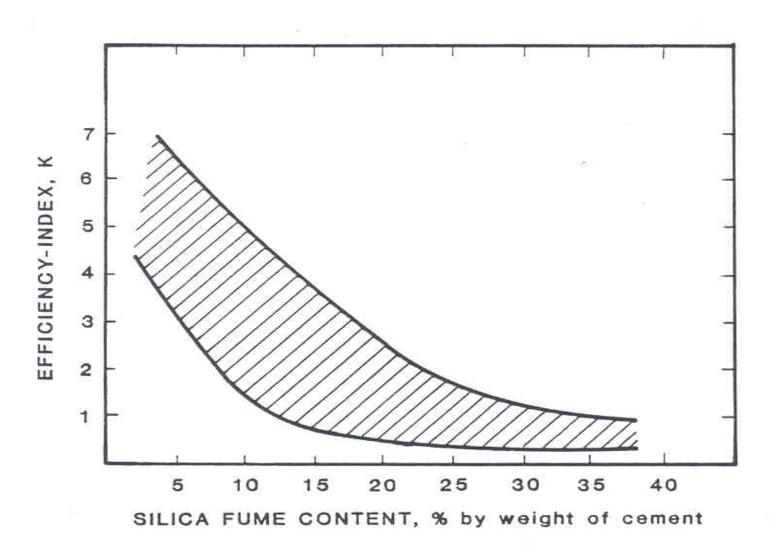
 Raise reflectivity of pavements 15% offsets 4nt CO₂ emissions per 1000 sqft.

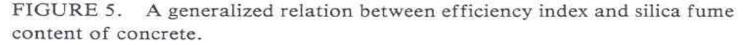
- 47% of global GHG emissions could be offset with light-colored pavements.

(CA Energy Comm)

Fly Ash class C

GGBF slag grade 120


COMPARISON OF CHEMICAL AND PHYSICAL CHARACTERISTICS — PORTLAND CEMENT, FLY ASH, SLAG CEMENT, AND SILICA FUME

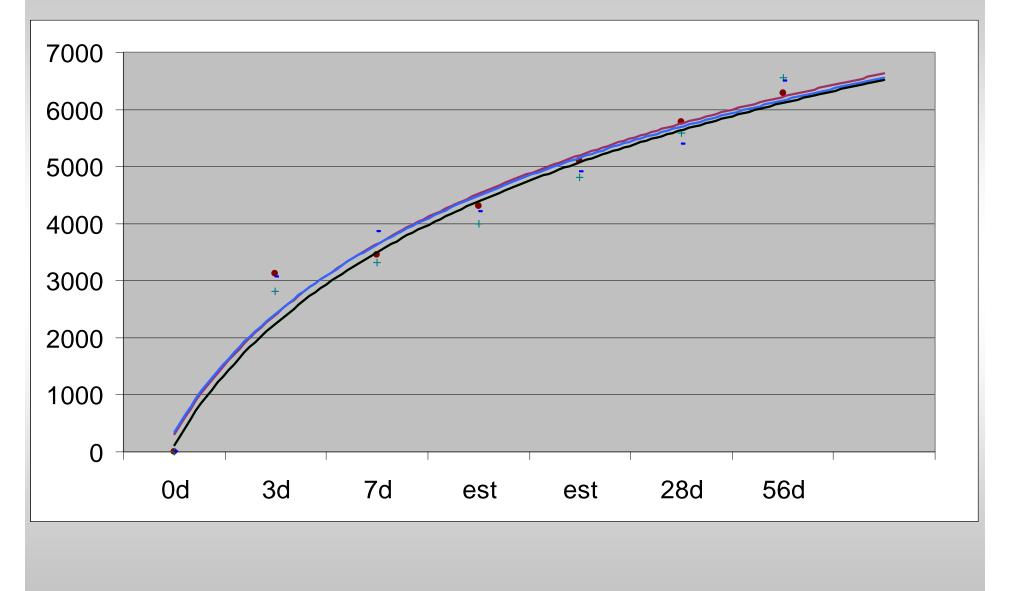

Note that these are approximate values. Values for a specific material may vary from what is shown. (Note 1)

PROPERTY	PORTLAND CEMENT	CLASS F FLY ASH	CLASS C FLY ASH	SLAG CEMENT	SILICA FUME
SiO ₂ content, %	21	52	35	35	85 to 97
AI20 ₃ content , %	5	23	18	12	
Fe ₂ O ₃ content ,%	3	11	6	1	
CaO content ,%	62	5	21	40	< 1
Fineness as surface area, m²/kg (Note 2)	370	420	420	400	15,000 to 30,000
Specific gravity	3.15	2.38	2.65	2.94	2.22
General use in concrete	Primary binder	Cement replacement	Cement replacement	Cement replacement	Property enhancer

Note 1. Information from SFA and Kosmatka, Kerkoff, and Panarese (2002).

Note 2. Surface area measurements for silica fume by nitrogen adsorption method. Others by air permeability method (Blaine).

Fundamentally HPC is green Technology



- Implies using the least amount of cement possible!
- Judicious use of EPA SCMs.
 - Particle packing reduced permeability.
 - ASR control.
 - Less water less shrinkage.
 - Reduced heat of hydration.
 - Lower strength reduced cracking, or
 - Optimized for early strength.
- NYC Building Code ('08) limits cement content; Max. 400pcy.

Sustainable HPC Mixtures - Iow shrinkage & permeability – I-99 Bridge Decks.

% Cement	70	65	70
PCY			
Cement	394.8	366.6	427.7
Slag			
Fly Ash	152.3	169.2	165
Silica Fume	16.92	28.2	18.33
CA, #58	1858	1858	1858
FA	1133.5	1124.8	1045.6
Water	242.53	242.52	262.74
AEA,			
oz/cwt	0.65	0.7	0.65
MRWR	7	7	7
HRWR	8	9	6
Slump	6	6	6.5
Air	5.75	5.25	6
w/cm	0.43	0.43	0.43

Strength results

90-2.01C Required Use Of Supplementary Cementitious Materials

General

The amount of portland cement and <u>SCM</u> used in portland cement concrete shall conform to the minimum cementitious material content provisions in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," and these specifications. The SCM content in portland cement concrete shall conform to one of the following:

A. Any combination of portland cement and at least one SCM, satisfying Equations (1) and (2):

Equation (1)

$(25 \times UF) + (12 \times FA) + (10 \times FB) + (6 \times SL)$		
MC		

Where:

- UF = Silica fume, metakaolin, or UFFA, including the amount in blended cement, pounds per cubic yard.
- FA = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content up to 10 percent, including the amount in blended cement, pounds per cubic yard.
- FB = Fly ash or natural pozzolan conforming to the requirements in AASHTO Designation: M 295, Class F or N with a CaO content up to 15 percent, including the amount in blended cement, pounds per cubic yard.
- SL = GGBFS, including the amount in blended cement, pounds per cubic yard.
- MC = Minimum amount of cementitious material specified, pounds per cubic yard.
- X = 1.8 for innocuous aggregate, 3.0 for all other aggregate.

CALTRANS - 2009 Section 90 Equation (2)

 $MC - MSCM - PC \ge 0$

Where:

- MC = Minimum amount of cementitious material specified, pounds per cubic yard.
- MSCM = The minimum sum of <u>SCMs</u> that satisfies Equation (1) above, pounds per cubic yard.
- PC = The amount of portland cement, including the amount in blended cement, pounds per cubic yard.
- B. 15 percent of Class F fly ash with at least 48 ounces of LiNO₃ solution added per 100 pounds of portland cement. CaO content of the fly ash shall not exceed 15 percent.

CALTRANS Mixture - Precast SCC

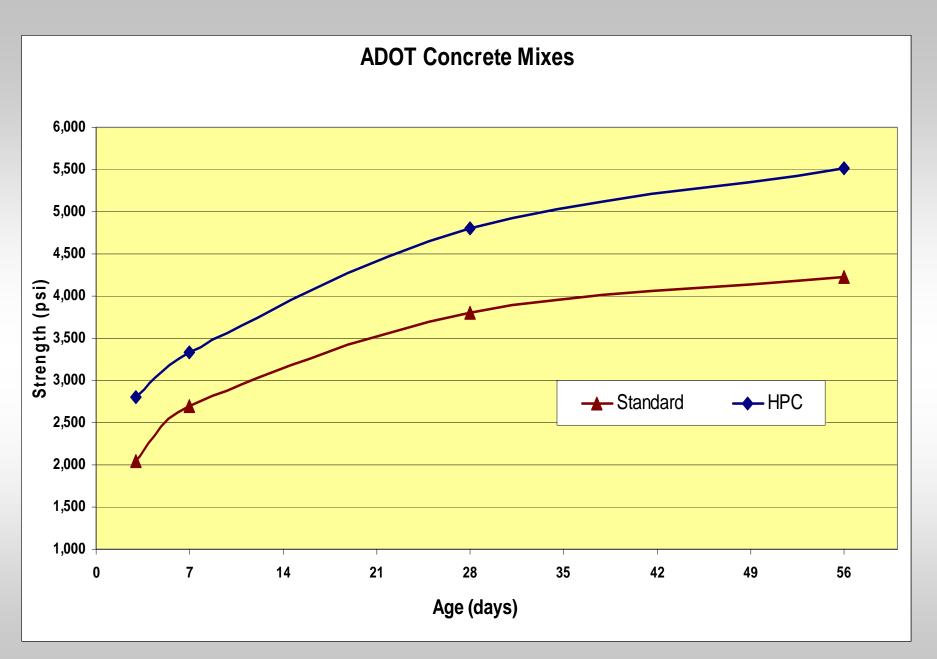
	<u>Ref.</u> pcy	<u>CALTRANS</u> pcy	<u>CO₂ effect</u>
Cem.III	611	535	-76 lbs
Fly ash	76	120	+0.44 lbs
SF		20	+0.32 lbs
CA	1530	1530	
FA	1470	1470	
HRWA	53oz	53oz	
Set NC,	110oz	110oz	
Rapid1,	110oz	80oz	
Water	282	282	
Flow, in.	23	23	
1d, psi	4000*	3600	
7d	5000	7240	
90d	7800	10260	

Sunshine Bridge

WB on I-40 45 miles E. of Flagstaff, AZ Elevation 5,185 Deck replacement

din statistics

ADOT SCM-HPC mix


compared to

AODT Class S standard bridge deck mix

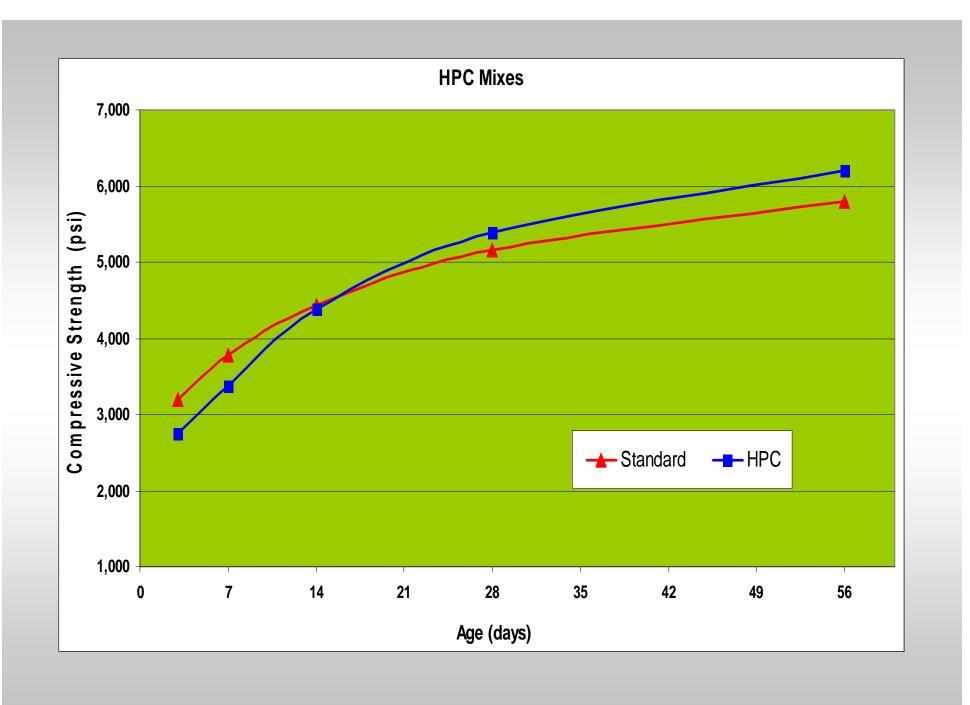
Materia	ls	Standard	HPC
Cement content, (lb/yd ³)	530	450
Fly Ash (lb/yd ³)		110	110
Silica Fume, (lb/yd ³)		0	23
Fine Agg. (lb/yd ³)		1244	1181
Coarse Agg. (lb/yd ³)		1592	1765
Water, (lb/yd ³)		276	250
Water/cementitious rat	io	0.43	0.43
Slump, (inch)		4	4
Air content, %		5.30%	5.60%
Paste content, %		30%	27%
Permeability 56 days (Coulomb)		2610	768
	3 days	2040	2810
Compressive Strength (psi)	7 days	2700	3340
	28 days	3810	4810
	56 days	4230	5510

ADOT SCM Application

- 80 pounds less cement
- 3 gallons less water
- Reduced paste from 30 to 27 %
- Reduced shrinkage
- Increased compressive strength
- Reduced permeability (3 times)

Jaber Engineering Consulting, Inc.

ADOT SCM Application


Age	Modulus of Elasticity (psi), ASTM C-470					
Age	Average	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
<mark>3-day</mark>	3,283,333		3,400,000	3,200,000	3,250,000	
7-day	3,500,000		3,550,000	3,450,000	3,500,000	
28-day	3,980,000	4,100,000	4,150,000	3,900,000	4,000,000	3,750,000
Core	Rapid Chloride Permeability (Coulomb), ASTM C-1202					
COLE	At 56 days	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Α		983	1042	1029	1123	936
В	984	953	973	944	989	871
Average		968	1008	987	1056	904

Chicago DOT HPC mix (I-90)

compared to

ILDOT Class AAA standard bridge deck mix

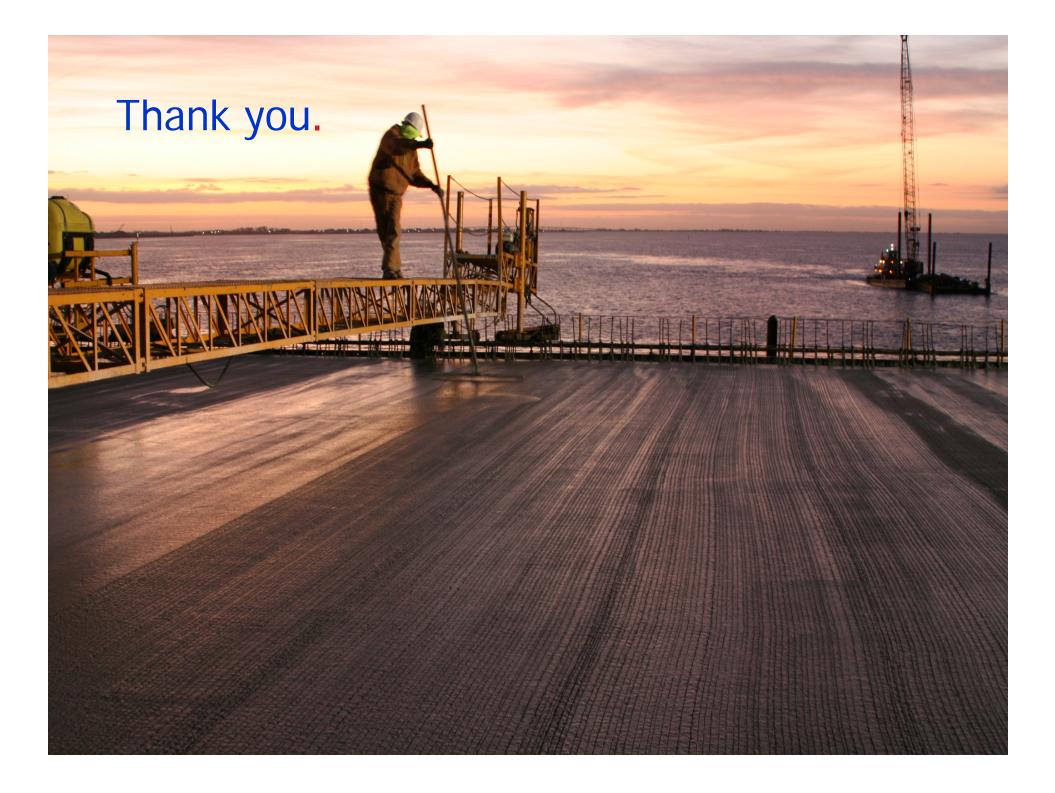
Material		H	РС	ILDOT Mix	
		Mass	Volume	Mass	Volume
Cement, pcy		470	2.39	665	3.39
Fly Ash, pcy		100	0.64	117	0.75
Silica Fume, pcy		40	0.29	-	-
Water, gal		29.8	3.97	36.8	4.91
Total Volume, ft3			7.29		9.05
Water/Cementitious Ratio			0.407		0.392
Crushed Gravel, pcy		1770		1680	
Natural Sand, pcy		1190		993	
Aggregate Volume, ft3			17.96		16.2
AEA, oz/cwt (6.5%)		0.8	1.75	0.9	1.75
Permeability, coulomb		1200		2850	
	3 days	2760		3200	
Compressive Strength, psi	7 days	3370		3770	
	14 days	4380		4440	
	28 days	5390		5160	
	56 days	6210		5790	
28:7 day ratio, min. 1:40		1.6		1.37	

Parker Road Bridge Colorado DOT

CDOT SCM-HPC mixtures.

MIX Materia	als/Properties	Range		
Cement content, (lt	o/yd ³)	465 to 485		
Fly ash (lb/yd ³)		93 to 120		
Silica fume, (lb/yd ³))	18 to 20		
Water/cementitious	ratio	0.37 to 0.41		
Sand, (lb/yd ³)		1231 to 1398		
Gravel, (lb/yd ³)		1595 to 1780		
HRWR (oz/100 lb	cement)	5 to 12		
AEA, (oz/100 lb co	ement)	0.50 to 1.5		
Retarder, (oz/100 l	b cement)	2 to 3		
Slump, (inch)		4 to 6		
Air content, %		5.5 to 8.5%		
Permeability at 28	days (Coulomb)	2700 to 2900		
Permeability at 56	days (Coulomb)	1400 to 1600		
First cracking (day	s)	14 to18		
	3 days	2500-3500		
Compressive	7 days	3500-4300		
Strength (psi)	28 days	4600 to 5600		
	56 days	5400 to 6600		

OR DOT - SCM Application.


1998, Brush Creek Bridge (all members) - 30% Fly ash, and 4% Silica fume.

October 2003, 1st designated Class of HPC.

Conclusion

- The sustainability of concrete bridge structures can be improved incrementally by optimizing the SCMs used.
 - Lower Concrete initial CO₂ impact.
 - SCMs extend service-life and improved LCC of bridges.
- HPC and green technology are parallel.
- Industry's challenge: Break the paradigm of 100-yrs of over-using Portland cement.
 - 'We've never made concrete like this before'.
 - New blended-SCM products coming into the mkt.
- Recognition of Concrete's total environmental impact.

