Presented By:

Douglas Sarkkinen, P.E., SE. Principal Kramer Gehlen and Associates, Inc. Vancouver, WA

Overview

- Project Background
- Bridge Selection
- Sequence
- P.T. Profile
- Deflection
- Conclusions

Map of Washington, Lewis County

December 2007 Storm

Bridge Selection Criteria

- New Hydraulic study raised the expected flood elevation
- Maintaining 4ft of clearance above flood elevation for debris
- Robust Structure needs to withstand debris impact
- Clear Span did not want scour issues or areas for debris to build up on

Bridge Options Considered

- Cast-in-place post-tensioned box
- Steel Girders
- Steel Tied Arch
- Steel Truss
- Post-tensioned Spliced Precast Girders

Girder Deflections

- Given: Final Road Profile
- Determined various deflections at different stages
- Adjusted Falsework Points and Elevation of Deck Forms to Produce Desired Final Profile

Constraints

- Fixed Constraints:
 - Final Grade
- Variable Constraints:
 - Abutment Elevations
 - Elevation of Temporary Piers
 - Depth of Girder Build-Up

BUILD-UP THICKNESS

Challenges

1) Variable Deflections and Rotations in Independent Segments

Challenges (Cont.)

- Had to Adjust Duct Profile Very Slightly in Region Around Splices to Ensure Smooth Variation
- Differential Rotations Corrected for in Variable Build-Up Thickness
- Try to Limit Rotation as Much as Possible by Varying amount of Prestressing

Challenges (Cont.)

2) Limited Capability to Vary Amount of Prestress

- Adjusted Prestress as much as Possible to get "Flat" Girders Prior to Splicing
 - Due to High Stresses Had a Minimum Amount of Prestressing that had to be Maintained

Challenges (Cont.)

3) Non-Typical P.T. Profile

4) Variation of I, (3) Cases

- Composite or Non-Composite
- P.T. Ducts Grouted or Ungrouted

5) Account for Anticipated Future Deflections

Determination of P.T. Profile

- Set Splice Locations at 60' +/- From Girder Ends
- No Prestress through Splice Locations
- Prestress has to Develop Coming out of Splices
- Maintain "0 Tension" at Service Loads

P.T. Profile (Cont.)

- Determined Amount of P.T. Required for Zero Tension at C.L.
- Determined Depth of P.T. Required at Critical Location
 - Calculated at 1' Intervals for 4' Past Splice in Either Direction

P.T. Profile (Cont.)

- Had c.g. of Tendons at End of Bridge, at Critical Location, and Knew c.g. Required at C.L.
 - Fit a Parabolic Curve through known points
 - Ran Tendons Flat Throughout most of Center Girder

P.T. Profile (Cont.)

 Concern: Bursting Stresses Due to Decreased Radius of Curvature and Amount of P.T.

Due to Girder Length Radius of Curvature
Still well Within Code Limits

Approach

- Set Build-Up Thickness at Temp. Piers to Minimum Value
- Calculated Deflections at Each Time Step
 - Immediate Elastic Deformations
 - Prestress and P.T. Deflections Using Elastic Weight Method
 - Applied WSDOT Deflection Multipliers

WSDOT Creep Multipliers

· .	Normal Strength Concrete $f'_C \le 7.0 ksi$		High Strength Concrete $f'_C \succ 7.0$ ksi	
	Non- Composite	Composite	Non- Composite	Composite
Deflection at Erection				
Apply to the elastic deflection due to the member weight at release of prestress	1.85	1.85	1.75	1.75
Apply to the elastic deflection due to prestressing at release of prestress	1.80	1.80	1.70	1.70
Deflection at Final				
Apply to the elastic deflection due to the member weight at release of prestress	2.70	2.40	2.50	2.20
Apply to the elastic deflection due to prestressing at release of prestress	2.45	2.20	2.25	2.10
Apply to the elastic deflection due to the Super Imposed Dead Loads	3.00	3.00	2.75	2.75
Apply to the elastic deflection due to weight of slab		2.30		2.15

Approach (Cont.)

- Assumed Initial Value for Abutment Elevation
- Varied Elevation Linearly between Abutments and Piers
 - Set Top of Abutment 1 as Baseline

Deflection Results

Deflection Results

Deflection Results

Deflection Results

Deflection Results

Deflection Results

Final Result

• Top of Deck That Arrives at Desired Grade

Conclusion

- Summarized Project Background
- Addressed Issues Pertaining to Deflections
 - Segment Rotations
 - Balance Prestress and P.T.
 - P.T. Profile
- Accounted For Various Creep Coefficients
- Monitor Future Deflections of the Bridge

