San Francisco-Oakland Bay Bridge

Connection of the Oakland Touchdown Structures and Skyway at Hinge E

Presenters:	Vinh Trinh, SE – WKE, Inc.				
	Xiaoyun Wu, PhD, PE – IDC Consulting Engineers, Inc.				
Co-authors:	Mohan Char, PhD, PE – AECOM/LAN				
	George Saad, PhD, PE – Moffatt & Nichol				
	Hasan El-Natur, PhD, PE – Caltrans				

Project Structures Design Team

- Caltrans
- □ T. Y. Lin/Moffatt & Nichol, Joint Venture
- PB&SJ
- AECOM/LAN
- □ WKE, Inc.
- □ IDC Consulting Engineers, Inc.
- EMI/Fugro

Oakland Touchdown Structures (OTD)

Oakland Touchdown Structures

Oakland Touchdown Structures

2 Parallel Structures:

- WB Structure (PBS&J, WKE, & IDC)
- EB Structure (AECOM/LAN)
- Cast-in-place Prestressed Concrete Box Girder
- 7-Span, 2-Frame

Hinge E – Design Challenges

- Connecting 2 Different Structure Systems
- Constructed at Different Time
- Time Dependent Loss Analysis
- Limited Cross Section Area

Hinge E

Connects 2 Structures with Pipe Beam

- Hinge at Mid-span
- Different structure types = different behaviors
- Connected with steel pipe beam
 Cantilever for DL
 Continuous for LL

Hinge E

- Connect Aged Precast Segmental Box to New CIP Box
 - East end of Skyway was completed 3 years ago
 - Skyway supported on temporary towers with 4 jacks

Hinge E

Time Dependent Loss Analysis to Determine Camber

- Accurate analytical modeling
 - Short Term Deflection at Connection Time for Hinge Pipe Beam Installation
 - Long Term Deflection to determine the loading on the Hinge Pipe Beam
- Post Design Camber Verification

Camber Estimation Parameters

1. Variation in Material Properties

- Test concrete mix design to determine
 - Compressive Strength
 - Density
 - Creep and Shrinkage
 - Modulus of Elasticity

2. Construction Loadings/Falsework

- Including actual form works and construction equipment loading
- Obtain settlement value from the Contractor

Camber Estimation Parameters

3. Construction Schedule

- Work closely with the Contractor to determine realistic construction schedule
- 4. Skyway Deflection
 - Jacks supporting the Skyway were released to survey the Skyway elevation

Camber Adjustment Allowance

Adjustment Allowance

Superstructure can be jacked up or weighed down to line up with Skyway, if necessary

Hinge E Construction Sequence

Construction Sequence

- Release Skyway jacks to establish elevation
- Construct OTD superstructure to required camber
- Post tension OTD frame (35 days delay)
- Release falsework except for OTD temporary tower
- Align OTD with Skyway, if necessary
- Finish installation of pipe beam

Hinge-E Key Analysis Items

- OTD Hinge-E Deflection When P/S Is Completed
- OTD Hinge-E deflection When Hinge Pipe Beams Are Going To Be Connected
- OTD Hinge-E Deflection After P/S Long Term Losses (20yrs)
- Pipe Beam Forces After OTD Connected With Skyway
- Hinge-E Diaphragm Forces Due to Pipe Beam Reaction

Model Geometry and Load Validation per Linear Elastic Dead Load Analysis

Hinge-E DL Deflection & Moment at P17 Comparison between Adapt & BDS Analysis Results

Program	Case	Def at Hinge-E				M at P17			
		Try-0 (ft)	Try-0 (mm)	Try-1 (ft)	Try-1 (mm)	Try-0 (k-ft)	Try-0(KN-m)	Try-1 (k-ft)	Try-1(KN-m)
Adapt	90k @ tip	0.31	96.14	0.02	6.74	-1.79E+05	-2.43E+05	-2.08E+04	-2.81E+04
BDS	90k @ tip	0.32	96.01	0.02	6.71	-1.79E+05	-2.42E+05	-2.08E+04	-2.81E+04

- Concrete Properties Adjust from Lab Test Data of the Field Concrete Mix
 - Test Data (Test Performed by Prof. Al-Manaseer SJSU)
 - Concrete cylinder 6in x 12in
 - Relative Humidity = 50%
 - Notional Size = 3"
 - Site Conditions
 - Relative Humidity = 70%
 - Based on Average Section Properties: Notional Size = 14"
 - Adjustment Factors
 - Applied to transform the test results to reflect the actual site conditions

ACI 92 & CEB-90 Time Dependent Concrete Models to Match Adjusted Lab Test Data & Used in the Analysis Model

Stage v.s. Day in Construction

Day	110	110	115	120	127	128	131	135	150
Stage	1	2	3	4	5	6	7	8	9
Note	Before P/S	Grd 25% P/S	Grd 50% P/S	Grd 75% P/S	Edger Grd 100% P/S	Deck P/S	Grd 100% P/S	Portion ADL Applied	Before Pipe Connect

Analysis Results

Hinge-E Deflections - used for determination of the construction camber

Analysis Results

EB OTD Tilted Deflection Due to Bike Lane Loading

- Pipe Beam Forces verified the pipe beam capacity is adequate for field condition
- Pipe Beam Reaction for Hinge-E Diaphragm design

Hinge-E Diaphragm Design

- Limited Cross Section Area & Member Size
- Large Concentrated Load

9 19

- Complicated Stresses Distribution
- 3-way Pre-stressing
- Detailing

Hinge-E Diaphragm Design

Partial Diaphragm Detail

Hinge-E Diaphragm Design

Conclusion

- Pre-cast Segmental & CIP Box Girder mid-span connection hinge is feasible.
- By special analysis with field test material properties, boundary conditions and carefully scheduled construction stages, a reasonable camber value can be set to enable smooth operation for the pipe hinge beam coupling installation.
- Aesthetic architectural design effect can be always achieved by thoughtful structural design & detailing In this case:

- \rightarrow Moment connection at Hinge-E for LL is used to reduce the maximum moment demand at relatively shallower cantilever support
- → 3-way P/S is designed to provide maximum section capacities and reduce rebar congestion
- \rightarrow High compressive concrete strength (8.5 ksi) is used to provide compatible compression capacity for matching the large volume of the reinforcement.

