LRFD Fatigue Design of Steel Bridges in California

Lian Duan, Ph.D., P.E. Murugesu Vinayagamoorthy, P.E. California Dept. of Transportation Sept. 22, 2009

1

Introduction Caltrans Bridge Design **Specifications – Fatigue Design** AASHTO-LRFD Fatigue Design • AASHTO LRFD Vs. Standard California 2008 Amendments **Fatigue Design**

Fatigue Phenomena - Initiation and/or growth of cracks when cyclic stresses are applied

Fatigue Design Approaches

- Fracture-Mechanics Widely used in automotive, airspace and machine industry
- Hot Spot Widely used in offshore tubular structures
- S-N (Stress-life Detail-categories)
 Generally used in bridge and building structures

Caltrans BDS – Fatigue Design

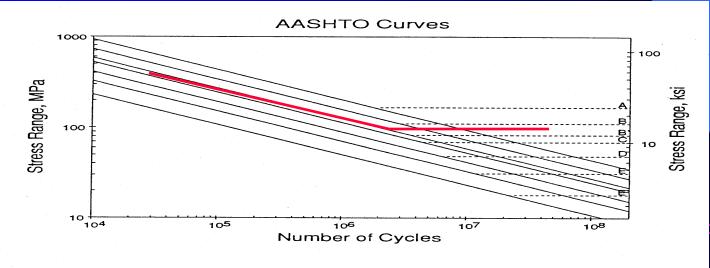
- Used Prior to 2007
- Based on AASHTO Standard Specifications (17th Edition, 2002)
- Applied Stress Ranges 4 Load Cases
- Allowable Stress Ranges
 - Redundancy
 - Number of Cycles
 - Type of Detail

Caltrans BDS – Fatigue Design

Applied Stress Ranges - Service Load

- Permit Truck (with adjacent HS20 Truck) -100,000 cycles
- HS20 Multiple Lane Load (0.640 kip/lane with shear or moment rider) - 500,000 cycles
- HS20 Multiple Trucks 2,000,000 cycles
- **HS20 Single Truck** >2,000,0

Caltrans BDS – Fatigue Design


Allowable Fatigue Stress Ranges BDS Table 10.3.1A

REDUNDANT LOAD PATH STRUCTURES							
Category	Allowable Range of Stress, F _{sr} (ksi)						
(See Table	For 100,000	For 500,000	For 2,000,000	For > 2,000,000			
10.3.1B)	Cycles	Cycles	Cycles	Cycles			
Loading	Permit	HS20 Multilane	HS20 Multitruck	HS20 Single Truck			
А	63	37	24	24			
A (Weathering Steel)	49	29	18	16			
В	49	29	18	16			
В'	39	23	14.5	12			
С	35.5	21	13	10			
C (Trans Stiffener)	35.5	21	13	12			
D	28	16	10	7			
Е	22	13	8	4.5			
E'	16	9.2	5.8	2.6			
F	15						

AASHTO LRFD - Fatigue Design

Two Categories

- Infinite Life Maximum applied stress range = (2x Effective stress Range) < Constant-amplitude fatigue threshold = $(\Delta F)_n$
- Finite Life Effective stress range $< (A/N)^{1/3}$

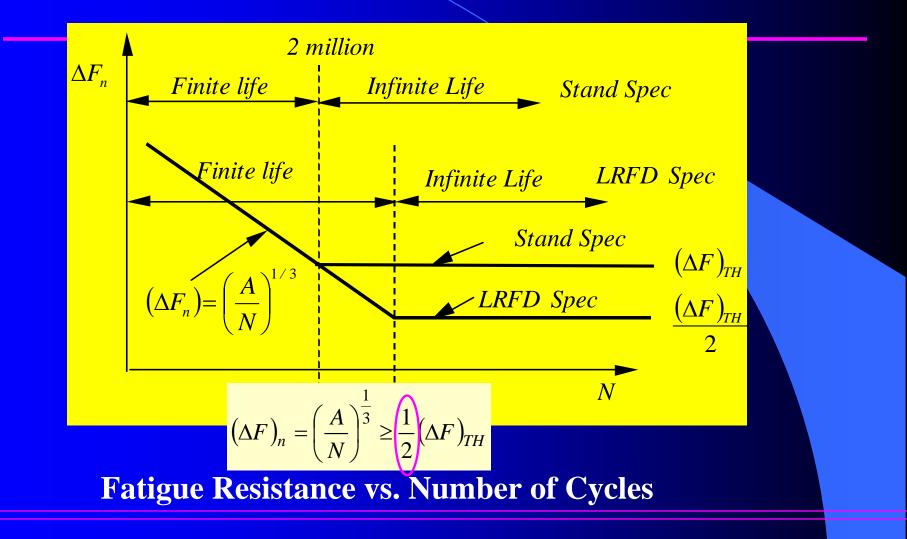
AASHTO LRFD 4th Ed. 2007 Fatigue Design

Design Criteria

$$\gamma(\Delta f) \leq \left(\Delta F\right)_n$$

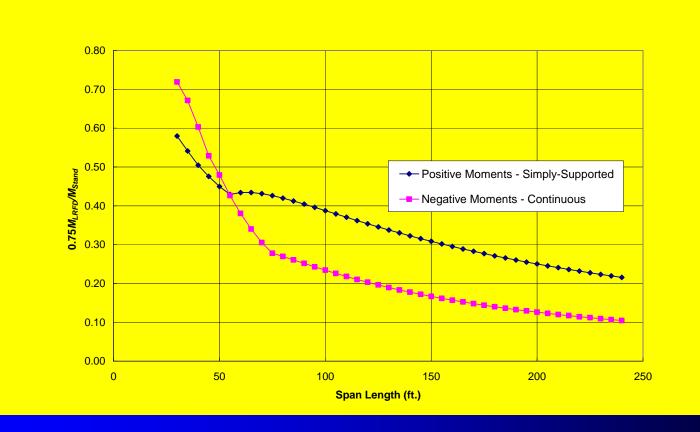
= load factor (0.75) – (Means HS15)

 (Δf) = live load stress range

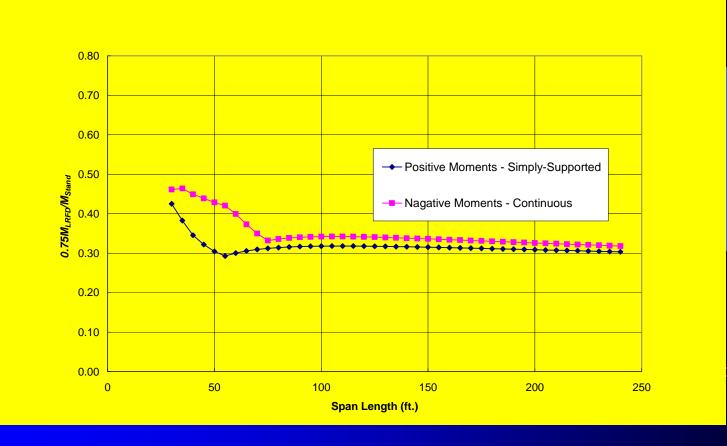

 $(\Delta F)_n$ = nominal fatigue resistance

$$(\Delta F)_n = \left(\frac{A}{N}\right)^{\frac{1}{3}} \ge \frac{1}{2} (\Delta F)_{TH}$$

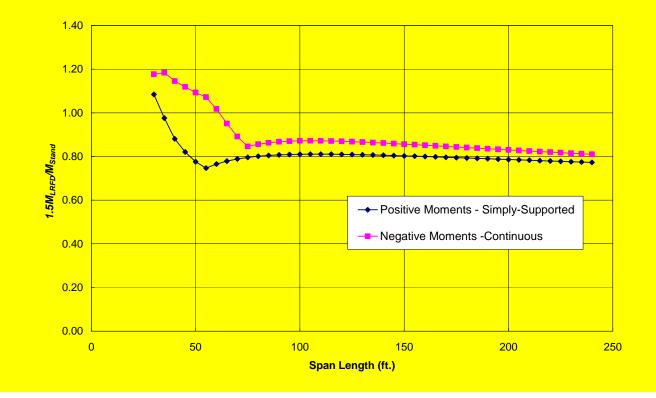
in which $N = (365)(75)n(ADTT)_{SL}$


Design Specifications	AASHTO Standard Specifications (17 th Edition, 2002)	AASHTO LRFD Bridge Design Specifications (4th Edition, 2007)
Fatigue Load and Stress Cycles	For finite life: $N = 2,000,000$, HS20 TruckLoading $N = 500,000$, HS20 LaneLoadingFor infinite life: $N > 2,000,000$ One HS20 Truck with a variable spacing	$0.75 \times (\text{One HL93 Truck with a constant spacing of 30 ft. between the 32.0-kip axles})$ $N = 365(75)n(ADTT)_{SL}$
Live Load Distribution Factor	of 14 ft. to 30 ft. between 32.0-kip axles For finite life (multiple lanes): $DF_{S \tan d} = \begin{cases} \frac{S}{11} & \text{For } S \le 14 \text{ ft} \\ \text{Lever Rule For } S > 14 \text{ ft} \end{cases}$ For infinite life (one lane): $DF_{S \tan d} = \begin{cases} \frac{S}{14} & \text{For } S \le 10 \text{ ft} \\ \text{Lever Rule For } S > 10 \text{ ft} \end{cases}$ (1b)	$DF_{LRFD} = \left[0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12Lt_s^3}\right)^{0.1} \right] / 1.2$ (6) $\frac{K_g}{12 Lt_s^3} = 1 \text{ is used for this study}$
Multiple Presence Factor	Loaded Lanes m 1 or 21.0030.90 ≥ 4 0.75	<i>m</i> = 1.0

Design Specifications	AASHTO Standard Specifications (17 th Edition, 2002)	AASHTO LRFD Bridge Design Specifications (4 th Edition, 2007)
Allowable Fatigue Stress Ranges or Fatigue Resistance	For finite life (Less than 2 million cycles) $(\Delta F_n) = \left(\frac{A}{N}\right)^{1/3}$ (3)	For finite life $(\Delta F_n) = \left(\frac{A}{N}\right)^{1/3}$ (8)
	For infinite life (Over 2 million cycles) $(\Delta F_r) = (\Delta F)_{rrr}$ (4)	For infinite life $(\Delta F_n) = \frac{1}{2} (\Delta F)_{TH} $ (9)
Fatigue Moment Effects on Interior Girder	$(\Delta F_n) = (\Delta F)_{TH}$ (4) $M_{\text{Stand}} = mDF_{\text{Stand}} \times M_{HS20} \times (1+I)$ (5) where M_{HS20} is moment induced by the Standard fatigue loading, i.e., HS20 trucks, lane loading or single HS20 truck loading	$M_{\text{Stand}} = \gamma_{LRFD} DF_{LRFD} \times M_{HI93} \times (1+IM)$ (10) where M_{HL93} is moment induced by the LRFD fatigue truck, one HL93 Truck with a constant spacing of 30 ft. between 32.0-kip axles; γ_{LL+IM} is a load factor of 0.75 for the fatigue limit state

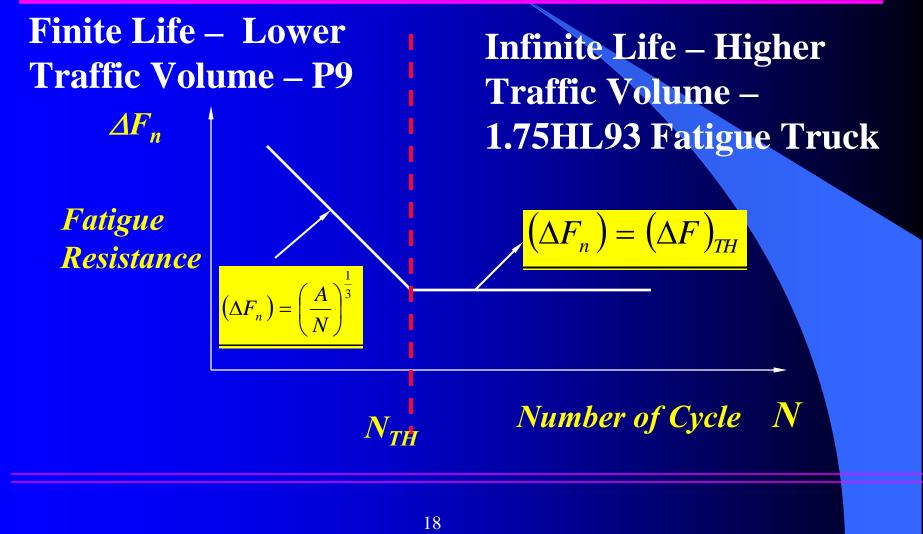


Parameters in Comparison Study 30 - 240 ft. **Span length: Girder spacing:** 5 – 14 ft. **Bridge spans:** Simple span **Two-equal span continuous Structures: Redundant Load Path**, **Case I Road,** $ADTT \ge 2500$ Girder: **Interior girder Moments: Max. Positive moments for simple span** Max. Negative moments at middle support of continuous spans


Finite Life – 500,000 Cycles Mean $M_{LRFD}/M_{Stand} = 0.23 - 0.34$ (SD = 0.10 – 0.16)

Finite Life – 2 M Cycles Mean $M_{LRFD}/M_{Stand} = 0.31 - 0.35$ (SD = 0.05 – 0.06)

Infinite Life – > 2 M Cycles Mean $M_{LRFD}/M_{Stand} = 0.81 - 0.84$ (SD = 0.07 – 0.15)

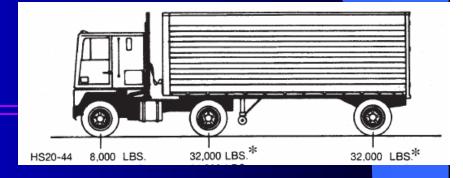


AASHTO LRFD Vs. Standard

For an interior girder • Finite Life : $M_{LFRD}/M_{Stand} = 23 - 35 \%$

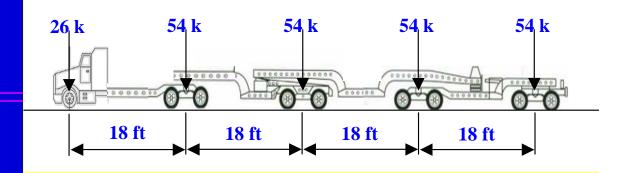
> Infinite Life : $M_{LFR} / M_{Stand} = 81 - 84 \%$

California 2008 Amendments Fatigue Design

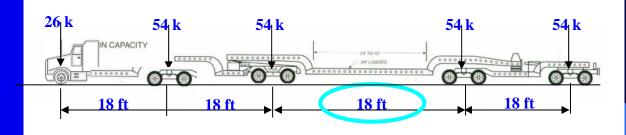


California 2008 Amendments Fatigue I – Infinite Life

• One HL-93 Fatigue Design Truck with Fixed Axle Spacing and $\gamma = 1.75$ (AASHTO LRFD 2009 Interim $\gamma = 1.5$)


 To equate to past Caltrans' infinite fatigue life design practice

19


California 2008 Amendments Fatigue II – Finite Life

- Fatigue II Finite Life Permit 9-Axle Truck with γ = 1.0 and Average Daily Permit Truck (ADPT) = 20
- Based on Caltrans' Permit Truck Traffic by calibrating the Actual Permit Truck Traffic to Equivalent P-9 ADPT

California 2008 Amendments Fatigue II – Finite Life

1. Fatigue Permit Truck 9-Axle

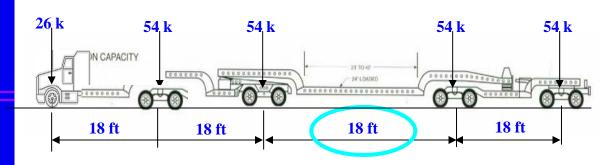
- 2. Number of stress range cycles per fatigue permit truck passage (n)
- 3. Average Daily Permit Truck (ADPT) of Fatigue Design Permit Truck = 20

Cycles I el l'augue I el mut l'itutk I assag				
		Span Length (ft)		
		>40	<=40	
Simple Sp	an	1.00	2.00	
Continuous Spans				
Near Support		1.20	2.00	
	Elsewhere	1.00	2.00	
Cantilever		5.00	5.00	
Trusses		1.00	1.00	
Transverse Members		1.00	2.00	

Cycles Per Fatigue Permit Truck Passage

California 2008 Amendments Permit Fatigue Truck

Number or Permit Trucks per year on HEAVILY used routes


Total	7010		8325	25
Longer	10	1%	12	1
P13 and				
P13	300	1%	356	1
P11	200	1%	238	1
P9	1500	1%	1781	5
P7	2000	1%	2375	7
P5	3000	1%	3563	10
lame	(Year 2004)	Rate	(for 75 years life)	Daily Truck
ruck	Annual Count	Growth	Average per year	Average

Approximate numbers are given by HQ Permit Office

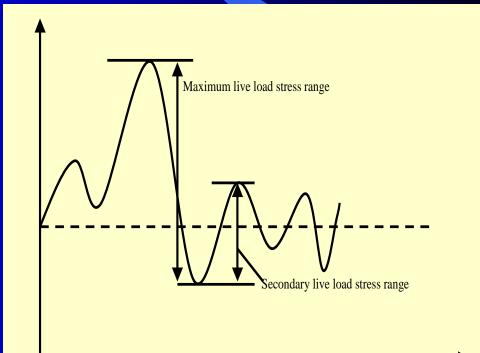
California 2008 Amendments Finite II – Permit Fatigue Truck

Most commonly used permit trucks are P5, P7 & P9

- All of them have axle spread in the middle
- Larger spread of axles creates larger negative moments
- Creates increased number of cycles in shorter span bridges
- However, it was decided to keep the 18 feet spacing and adjust the Average Daily Permit Truck (ADPT) volume
- P11, P13 and P15 trucks are less frequent
 - Decided to include effects of these vehicles by adjusting the ADPT

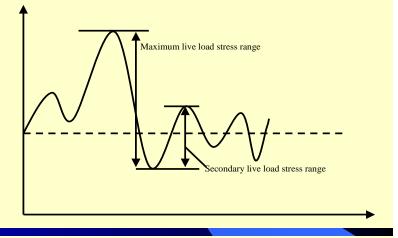
Equivalent Fatigue Truck Stress Cycles

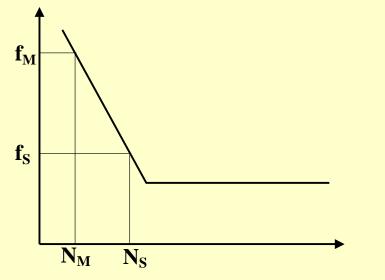
Equivalent Fatigue Truck Cycles - using actual truck configurations and frequency


- Tandem axles
- Variable axle spacing
- Number of permit trucks per day
- Number of stress cycles created by various truck configurations
- Probable axle load

Stress Cycles per Truck Passage

ASTM E-1049 - Rainflow Method

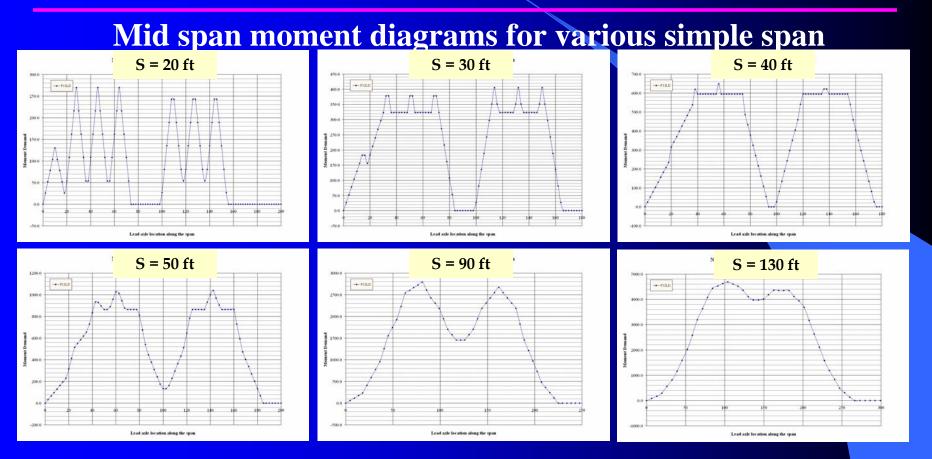

 Standard Practices for Cycle Counting in Fatigue Analysis



Equivalent Maximum Stress Range Cycles

- Obtain number of stress cycles
- Obtain the maximum stress range
- Based on Equal Fatigue Damage Principle to convert all stress range cycles to equivalent # of maximum stress range cycles

$$n_M = \sum_{i=1}^p \left(\frac{f_{Si}}{f_M}\right)^3 \times n_{Si}$$



Stress Cycles per Truck Passage

Stress Cycles are derived for the following cases:

- 1. Simple span mid span moment
- **2. Two Span Continuous Span**
 - Moment over the support
 - Moment @0.9th pt of Span 1
 - Moment at 0.4th point
 - Moment at 0.8th point
 - Load on transverse members

P13 Long Deck Truck Cycles

X-axis – distance of the Front axle of the Truck from start of the girder

Stress Cycle - P9 Fatigue Truck Simple Span

- Span length 20-40 ft. Cycles varies between 1.00 and 2.59
- Span length larger than 40 ft. cycles varies from 1.0
- Recommend
 Span > 40 ft. Use 1.0
 Span < 40 ft. Use 2.0

Span Length	Cycles
(ft)	
20	2.59
40	1.0
80	1.0
160	1.0
200	1.0
280	1.0

Stress Cycles -P9 Fatigue Truck Continuous Span at Support

- Span length 20-40 ft. Cycles varies between 1.00 and 1.96
- Span length larger than 40 ft. cycles varies from 1.0 – 1.21
- Recommend
 Span > 40 ft. Use 1.2
 Span < 40 ft. Use 2.0

Span Length	Cycles	
(ft)		
20	1.96	
40	1.0	
80	1.0	
160	1.04	
200	1.10	
240	1.16	
280	1.21	

Stress Cycles per Truck Passage

Cycles Per HS20 Fatigue Truck Passage				
	Span Length (ft)			
	>40	<=40		
Simple Span	1.00	2.00		
Continuous Span	ns			
Near Support	1.50	2.00		
Elsewhere	1.00	2.00		
Cantilever	5.00	5.00		
Trusses	1.00	1.00		
Transverse Mer	1.00	2.00		

Cycles Per Fatigue Permit Truck Passag

		Span Length (ft)	
		>40	<=40
Simple Sp	an	1.00	2.00
Continuous Spans			
Near Support		1.20	2.00
	Elsewhere	1.00	2.00
Cantilever		5.00	5.00
Trusses		1.00	1.00
Transverse Members		1.00	2.00

Equivalent P9 Stress Cycles

Equivalent P9 Fatigue Truck Stress Cycles of a Specified Truck is given by:

M_{truck} = Moment range created by the specified Truck

N_{truck} = **Number of truck volume per year**

ns_{truck} = number of cycles per passage of the truck

 M_{P9} = Moment range created by P9 Fatigue Truck

ESC_{P9F} = **Equivalent P9 Fatigue Truck Stress Cycles per year**

$$ESC_{P9F} = \left(\frac{M_{truck}}{M_{P9F}}\right)^3 \times N_{truck} \times ns_{truck}$$

Equivalent P9 ADPT

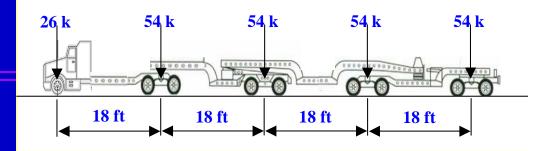
Equivalent P9 Fatigue Stress Cycles is Converted from all the permit trucks P5-P15:

$$ESC_{P9F} = \sum_{i=5,2}^{15} \left(\frac{M_{Pi}}{M_{P9F}}\right)^3 \times N_{Pi} \times ns_{Pi}$$

And, Equivalent Number of Fatigue Permit Truck Volume can be established as shown below :

$$N_{P9F} = \frac{ESC_{P9F}}{ns_{P9F}}$$

Maximum Equivalent P9 ADPT


Moment at Mid span of Simple Span	19
Moment at Support of Continuous Span	15
Moment at 0.9th point of Continuous Span	18
Moment at 0.4th point of Continuous Span	21
Moment at 0.8th point of Continuous Span	19
Reaction @ Midsupport of Continuous Span	15

California Amendment:

USE 20 as the ADPT of P9 Fatigue Trucks for design

California 2008 Amendments Fatigue Design Summary

Fatigue I – Infinite Life One Design Truck with
Fixed Axle Spacing and γ = 1.75 (AASHTO LRFD 2009 Interim γ = 1.5)
Fatigue II – Finite Life – Permit 9-Axle Truck with γ = 1.0 and ADPT = 20

Summary

Caltrans BDS – Fatigue Design
AASHTO-LRFD Fatigue Design
AASHTO LRFD Vs. Standard
California 2008 Amendments – Fatigue Design

