

Strategies and Practice of Accelerated Bridge Construction in California

Paul C. Chung Mike Beauchamp Jason Q. Fang

California Department of Transportation

"One Mission – One Vision"

Enhance Mobility across California

- Need for Accelerated Project Delivery
 - ABC works towards reducing roadway delay impacts on the traveling public
 - ABC delivers projects early, provides speedy capital investments
- Minimize construction and safety-related issues, and environmental impacts
- Improve constructability, product quality and performance.

ABC National Efforts

- NCHRP 20-73 "Accelerating Transportation Project and Program Delivery: Conception to Completion"
- 2006 ABC Workshop, Reno, NV
- "Guidelines for Accelerated Bridge Construction using Precast/Prestressed Concrete Components", PCI Northeast Bridge Technical Committee (2006)
- Seismic ABC Meeting at 2007 TRB Annual Meeting
- 2007 SABC meeting in San Diego
- 2008 FHWA ABC Conference in Baltimore, MD
- 2008 TRB SABC Collaboration Meetings
- UDOT ABC Standards Workshop report (anticipated April 2008)
- FHWA/WashDOT ABC Workshop (September 2008)
- FHWA Connections Manual (2008)

ABC XYZ?

• Technical

- Prefabricating Bridge Elements and Systems (PBES) and erecting on-site
 - Precast concrete super- and sub-structure- Majority of PBES in California
 - Steel superstructure
 - Steel & FRP superstructure
 - Segmental construction methods (could be C.I.P.)
 - Launch or Roll-in (SPMT) girders/superstructures
- Contract and Construction
 - Double shifts
 - Disincentive and Incentives

California Issues

- Costs of ABC use
 - Construction and material costs
 - Projects programmed before ABC tools considered
- Industry reluctance- CIP the preferred method (typically not a speedy operation)
- Seismic performance objective risks

Engineering Services: ABC- Council

• Pursues further widespread ABC practice for future standard bridge projects

California ABC Strategic Plan

- 1. "Lessons" Learned Report and Survey
- 2. ABC Selection Criteria and Implementation
- 3. Industry Engagement
- 4. Construction Specifications Development
- 5. Technical Research and Development
- 6. Project Implementation- Pilot Program

Project Delivery Paradigm

- 1. New concept of "Time"
 - "Time" critical to Stimulus and Recovery of Economy
 - ٠
 - Expedite Construction Start Time- Create jobs to stimulate economy
 - Accelerate Construction Time- Minimize traffic delay, safety, environmental impacts, save impact costs to the public
 - Expedite Completion Time- Early Capital (infrastructure) Improvement help speedy recovery of economy

Project Delivery Paradigm

- 2. Product Performance Measure
 - ABC selection depends on savings on
 Total Cost TC = CC + IC
 - CC= construction cost, IC= impact costs
 - IC= user delay, economic impact, environmental impact, etc. based on
 - Construction Impact Time (CIT)- impact duration
 - Construction Completion Time (CCT)- duration
 - Use "Time" ~ related to costs*
 - More research/study needed

Project Delivery- ABC

• References: FHWA Framework for Decision Making, Washington DOT, & Utah DOT ABC Decision Matrix

Structure Type Selection- ABC Solution Evaluation

Implemented effective May 1, 2009

- Safety, Functionality, Construction Cost (Constructability), New measure- "Time"
- Provide CIT and CCT
- Use Design Impact Questionnaire to determine needs for ABC

ABC Solution Evaluation

A. Construction Impact Time (CIT) Impact Level- Reduced Traffic Opening, Vertical Clearance, Environmental (Wetlands, River, etc.)

		Temporary Traffic Opening							
Bridge		Traffic	Opening						
Name	Location	Туре	Height	Width	Duratio	on Fa	lsework Depth	Comments	
Big Dalton	Eastbound								
Wash Bridge									
	Westbound								
Bridge		Work Space Required*	Temporary Traffic Openi						
Name	Location	1	Direction	n Traff	Traffic Type		s Duration	Comments	
	Bent 2-	25-ft Wide					Three Months	Inside Shoulder	
	Median of			Ve	hicle,				
	I-5 freeway		Northbour	nd Ped	estrian				

B. Construction Completion Time (CTT)

ABC Solution Evaluation

Design Impact Questionnaire

Given: CIT and CCT, and Structure Type: CIP, Precast, or others

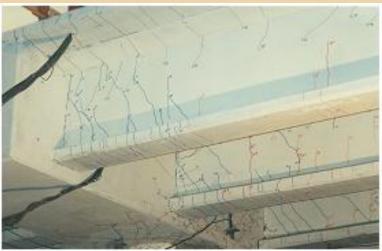
Questions	Yes No 1 2 3 4 5
General	
1. Is this an emergency bridge replacement?	
2. Is bridge on an emergency evacuation route or over	
railroad/waterway?	
3. Is there a funding requirement to accelerated project delivery?	
4. Is rapid recovery from natural/manmade hazards or rapid	
completion of future planned repair/replacement needed for this	
bridge?	
5. Is the bridge construction a critical path of the total project?	
6. Are there significant economic benefits if construction/project is	
completed ahead of schedule?	
Traffic	
7. Bridge carries high ADT or ADTT?	
8. Bridge over existing high ADT or ADTT facility?	
9. Bridge construction significantly impact traffic?	
a. Does it have high user-delay costs?	
10. Can the bridge be closed during off-peak traffic periods?	
11. Will the traffic control plan be significantly impacted?	

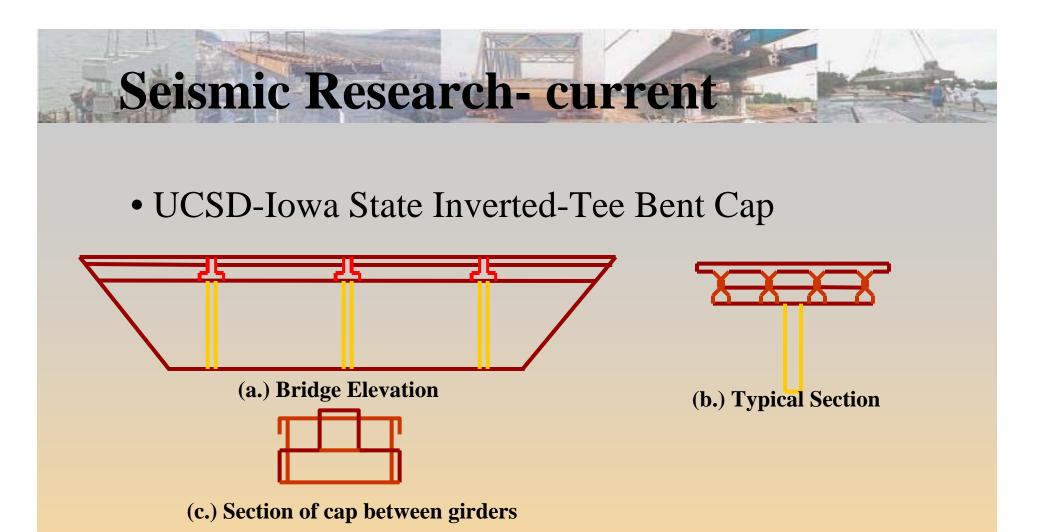
Design Impact Questionnaire

Construction	Yes 1	23	4 5	No
12. Do worker safety concerns at the site limit conventional				
methods, e.g., adjacent power lines or over water?				
13. Is the bridge location subject to construction time restrictions				
due to adverse economic impact?				
14. Does the site create problems for conventional methods of				
construction (falsework, concrete delivery, etc.)?				
Utilities				
15. Are there existing utilities/Railroad that impact the construction				
window?				
16. Are there existing utilities/Railroad that impact construction				
operations?				
Environmental				
17. Is the site environmentally sensitive area requiring minimum				
disruption (e.g. wetlands, air quality, and noise)?				
18. Are there natural or endangered species at the bridge site?				
a. Shorten construction window needed?				
19. Local weather limit the time of year for construction?				
20. Is the bridge on or eligible for the National Register or Historic				
Places, or a designated landmark structure?				
Total Scores				

• If Total Scores < 55, then provide an ABC structure alternative/solution.

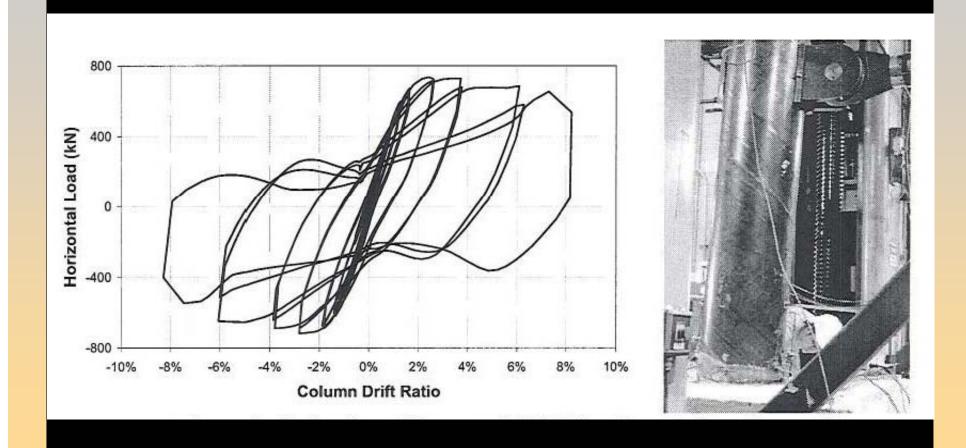
ABC Solution- Partnering


- 2. Making Decision with Partners
 - Seek input and support from Project Management, Planning, Design, Traffic, TMP, Environmental, Construction
 - When needed, coordinate with local transportation agencies, cities and counties.
 - Include ABC alternatives in PSR/PR documents?
- Benefits: Improved communications and collaborations to yield a more efficient PS&E process.


Seismic Research-past

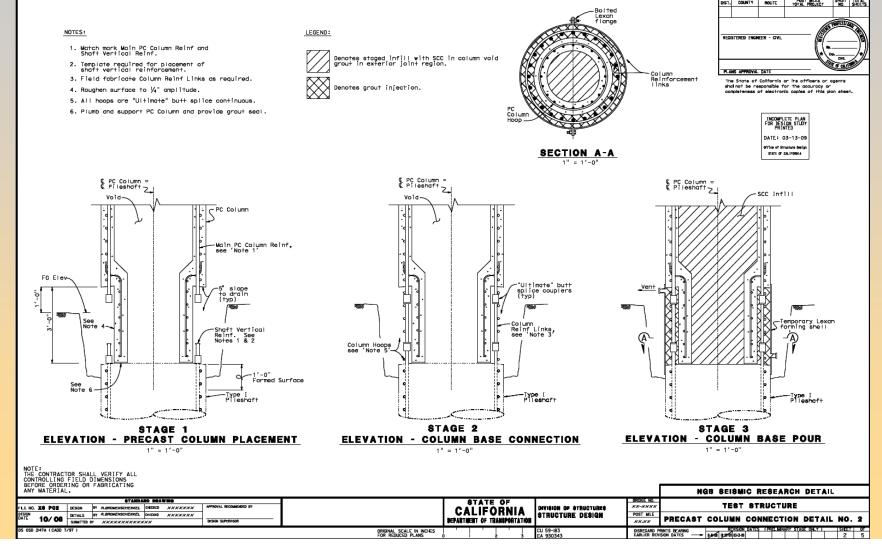
Spliced Girder Research- UCSD

- Superstructure Performance
 - Bent cap withstands plastic moment induced by column
 - Girders remain
 "Essentially Elastic" with small cracks
 - Post-tensioned bent cap clamps girders together

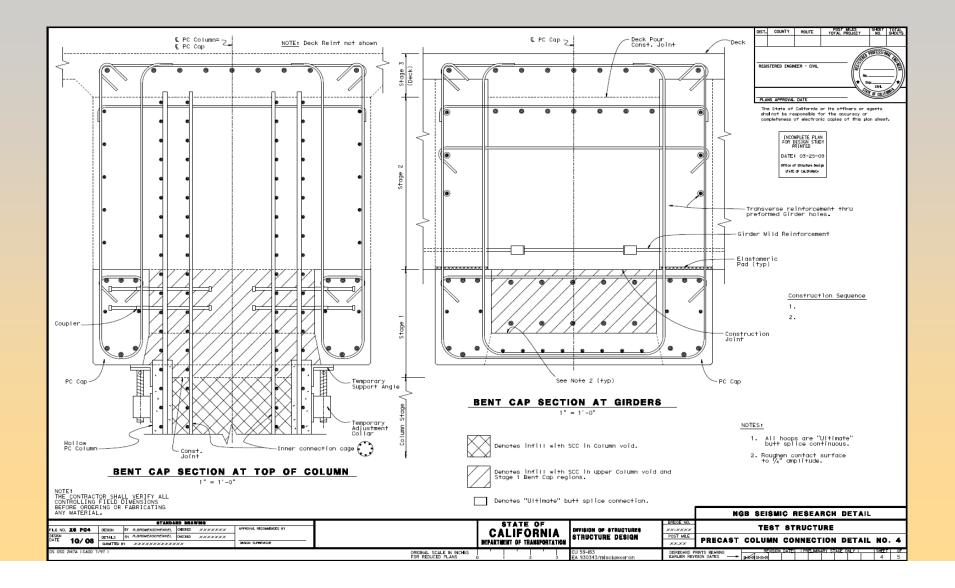


- Precast Bent Connection Tests- U. Washington
- NCHRP 12-74 (UCSD) studying "jointed construction"
- Accelerated Column Construction Tests- U. Washington
- MCEER ABC research

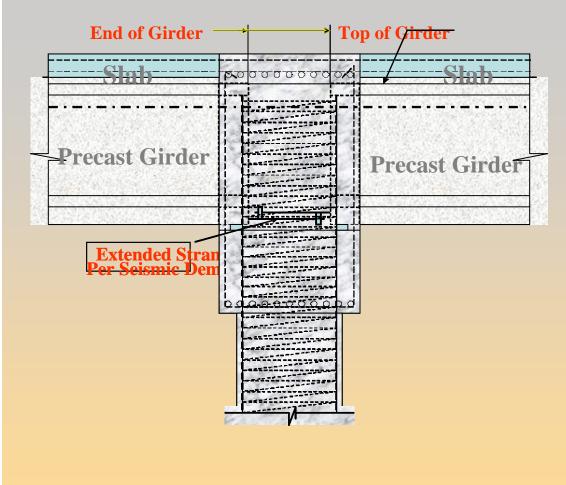
Seismic Research- current


Steel Tube Column Testing- U.W.

Seismic Research- Call for Submission (CFS

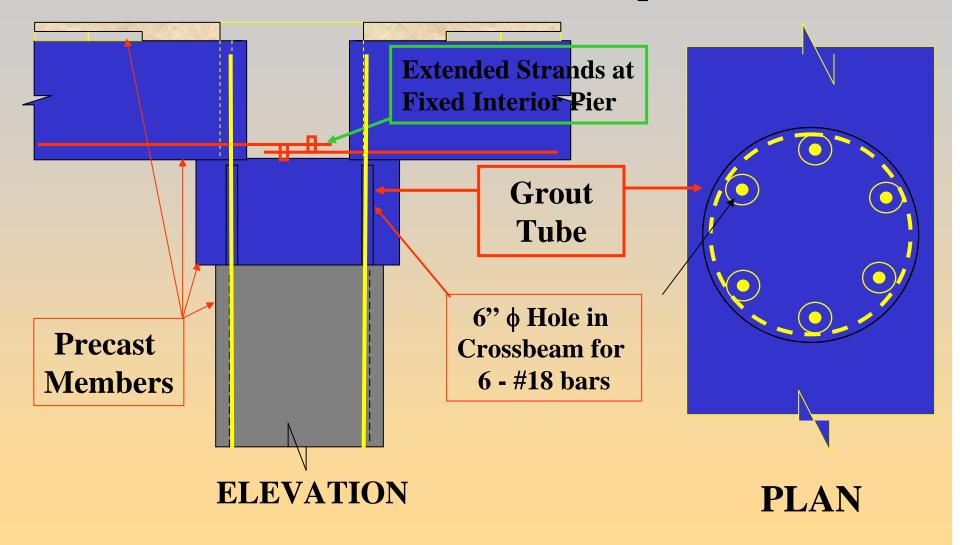

Next Generation Bridges (NGB)

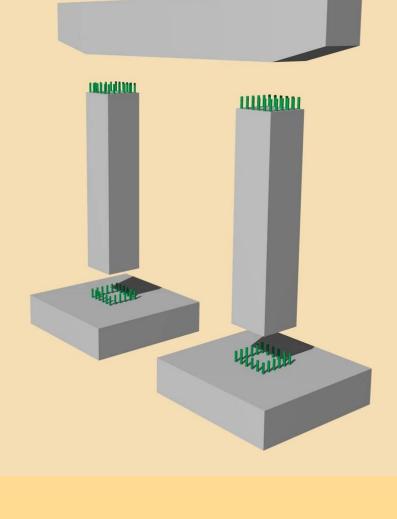
Precast Column connection to foundation

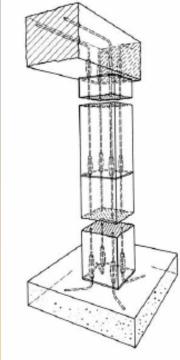


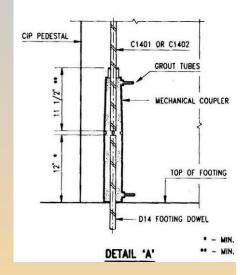
Seismic Research- CFS for NGB

Precast Column connection to Bent Cap


AASHTO/TRB Seismic Research Proposal Fixed Intermediate Pier Connection

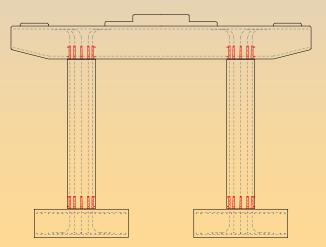


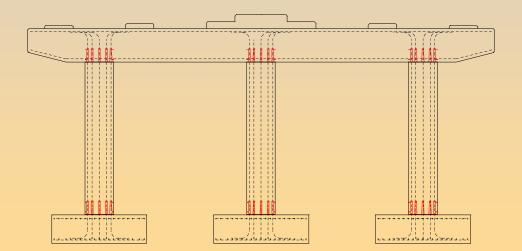

Precast Girder to Bent Cap



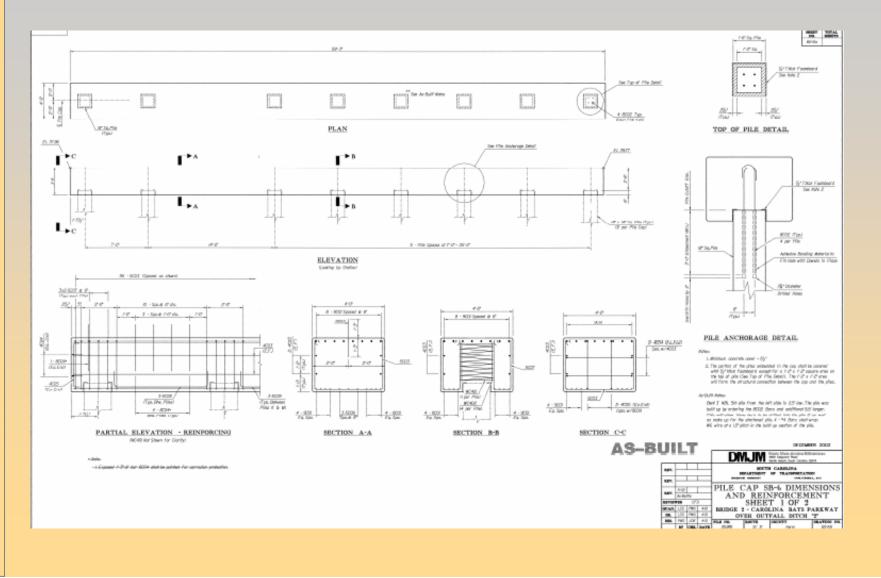
Grouted Reinforcing Splice Couplers- precast

elements



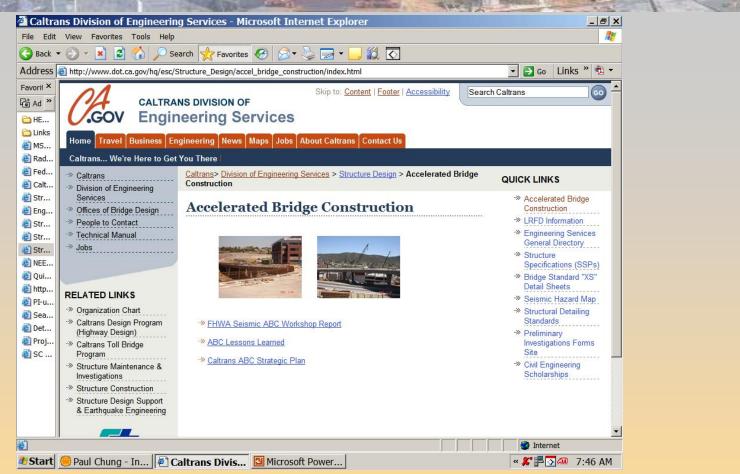


- Florida DOT
- Georgia
- Northeast


Grouted Reinforcing Splice Couplers

Precast Pile Cap-

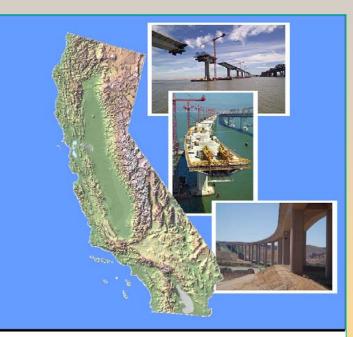
Precast Bent Cap- South Carolina


Industry Engagement

- Caltrans to sponsor workshop with consulting engineers, fabricators, erectors, trucking, and general contractors
 - a. Constructability
 - shapes, geometry, curvature, tolerances
 - b. Picking and transporting limits
 - c. New precast component & details solutions
 - d. New material applications
- Work with Industry to improve construction cost competitiveness

Future Action Item 2010/2011

- 1. Develop Cost Models
 - Input and support from Traffic and others
- 2. Develop formalized ABC Decision Criteria and Matrix based on Total Costs
 - Development needs collaboration from PM, Design, Traffic, and other PDT members
- Implementation of the formal APD/ABC Decision Criteria and Matrix using Total Costs


ABC On-Line

http://www.dot.ca.gov/hq/esc/Structure_Design/acc el_bridge_construction/

- FHWA Seismic ABC Workshop Report
- Caltrans ABC Strategic Plan
- ABC Lessons Learned Report- CA Applications

Caltrans ABC Strategic Plan Development of practice and policy for Future bridge projects

ABC- Advisory Council

August 2008 Version 1.1

Aumust 2008

Accelerated Bridge Construction Applications in California A Lessons Learned Report

August 2008 Version 1.1

Concluding Domorlys

Concluding Remarks

- ABC critical to meet AASHTO SCOBS Grand Challenge #3: *Accelerating Bridge Construction*
- Planning essential to proper application
- National and regional coordination essential and exists
- Successful implementation requires innovation
 - Engage partners to succeed!