

### **Technical Session Agenda**

#### **Introduction & Program Design** (Jessy Jose, King County)

- Project Location & Bridge Background
- Structural and Functional Deficiencies
- Project Planning and Evaluation
- d. Bridge Rehabilitation Goals

#### Rehabilitation Design & Construction (Ken Wilson, ISE)

- Design Development General Requirements
- Structural Component Details
- Construction Sequence
- d. Construction Photos
- e. Conclusion

Q&A



Introduction

Design Development

Construction

Conclusion





- Located in East King County
- 1,900 ADT



Introduction

Design Development

Construction

Conclusion



Meadowbrook Bridge looking North

- Built in 1921
- Posted for load limit due to structural deficiencies (16 Ton)
- Narrow bridge width (18'-6'').
- Substandard vertical alignment with limited sight distance
- Posted Vertical clearance only 14'
- Very Low sufficiency rating (4.27/SD)



Introduction

Design Development

Construction

Conclusion



Meadowbrook Bridge looking West- Down stream



Timber Approach

- 9 approach timber trestle spans
- 220' truss main span
- 6" of flood clearance above 100 year flood elevation



Introduction

Design Development

Construction

Conclusion









Introduction

Design Development

Construction

Conclusion



LOOKING NORTH



Introduction

Design Development

Construction

Conclusion





LOOKING WEST- Poor sight distance and substandard horizontal curve



Introduction

Design Development

Construction

Conclusion



Asphalt Deck Deterioration

Corroded Lateral Support





Approach cracks

Corroded Sidewalk Support



Structural Deficiencies



Introduction

Design Development

Construction

Conclusion

Weak Substandard Bridge Rails



Poor Drainage Details/Bottom **Cord Corrosion** 







Introduction

Design Development

Construction

Conclusion





Introduction

Design Development

Construction

Conclusion



Main Span Timber Stringers



Introduction

Design Development

Construction

Conclusion

#### **Summary of Deficiencies**



- Low SR and SD
- Seismically Vulnerable-Liquefiable soil
- **Load Limited**
- Narrow Travel Way Width
- Substandard/Deteriorated Rails
- Low Flood Clearance
- Poor Sight distance

#### **Added Constraint:**

Historical - King County Landmark





Introduction

Design Development

Construction

Conclusion

#### **Project** Goals

- Improve Traffic Safety
  - Lane & shoulder width as well as sight distance
  - Upgrade rail capacity and transitions to current standards
- Reduce frequent maintenance needs
  - Aging structure and paint system
- Remove bridge load posting
  - Provide adequate capacity for all legal truck loads
- Eliminate Structural Deficiencies
  - Timber Approach Capacity
  - Main Span Stringers
  - Steel Truss and Floorbeam Capacity
  - Bridge rail capacity and configuration deficiency
- Seismically retrofit the bridge
  - Reduce foundation demands and mitigate liquefiable soil
- Preserve King County Landmark
  - Retain the existing truss in current vehicular bridge usage



### Rehabilitation Design & Construction

- **Design Development**
- b. Structural Details
- c. Construction Sequence & Photos
- d. Conclusions



Introduction

Design Development

Construction

Conclusion

#### **Design Requirements**

- Eliminate Structural Deficiency
- Seismically retrofit the bridge
- Replace the bridge rail 3.
- Improve traffic safety for lane widths and sight distance
- Improve flood clearance 5.
- Bring vertical clearance to 6. standard
- Improve frequent maintenance Demands
- Preserve King County Landmark

#### **Design Solutions**

- 1a. Replace timber approach spans
- 1b. Reduce main truss demand (one lane bridge)
- 1c. Replace truss deck with light weight system
- 1d. Strengthen floorbeams through composite action
- 2a. Improve liquefiable soils
- 2b. Isolate/minimize truss substructure response
- 3a. Replace/add bridge rails and missing transitions
- 4a. Add roadway shoulders and increase lane widths
- 4b. Convert truss to one lane with signal actuation
- 4c. Added stop bars and "Rest-in-Red" signaling to slow traffic and improving sight distance
- 5a. Reducing truss deck thickness and raised bridge
- 6a. Thinner replacement deck improved clearance
- 7a. Replace the aging deck and timber trestles
- 7b. Remove the existing lead paint and repaint
- 7c. Collect truss drainage and provide treatment
- 8a. Retain the existing truss for vehicular usage
- 8b. Actions per Certificate of Appropriateness



Introduction

Design Development

Construction

Conclusion

#### **Rehabilitation Comparison**



**EXISTING BRIDGE SECTION** 

REHABILITATED BRIDGE SECTION



Introduction

Design Development

Construction

Conclusion

#### One Lane Traffic Configuration

**Current ADT** :1900

> 20 year forecasted ADT:4500



Analysis: 15.1 sec delay during peak



Introduction

Design Development

Construction

Conclusion

#### **Final Design Configuration**





Introduction

Design Development

Construction

Conclusion





Introduction

Design Development

Construction

Conclusion

#### Water Line Directional Boring Relocation











Introduction

Design Development

Construction

Conclusion

### **Installing Temporary Work Platforms**







Introduction

Design Development

Construction

Conclusion

#### **Demolition Work**











Introduction

Design Development

Construction

Conclusion

#### **Heat Straightening Truss Repairs**







Introduction

Design Development

Construction

Conclusion

#### **Grout Compaction Soil Densification**





Introduction

Design Development

Construction

Conclusion

#### Stone Column Soil Densification & Monitoring











Introduction

Design Development

Construction

Conclusion

**Painting Work** 











Introduction

Design Development

Construction

Conclusion

### **Approach Pile Driving**







Introduction

Design Development

Construction

Conclusion

#### **Approach Work**











Introduction

Design Development

Construction

Conclusion

#### Truss Deck Replacement Work







Introduction

Design Development

Construction

Conclusion

#### **Truss Lifting/Bearing Work**











Introduction

Design Development

Construction

Conclusion

#### **Exodermic Truss Deck Replacement**











Introduction

Design Development

Construction

Conclusion

### **Signal Installation**







Introduction

Design Development

Construction

Conclusion

#### **Bridge Rail Installation**









Introduction

Design Development

Construction

Conclusion



#### **Construction Cost**

- \$4,152,000

#### **Construction Duration**

- 7 1/2 months





Introduction

Design Development

Construction

Conclusion



After







Introduction

Design Development

Construction

Conclusion



Before







Introduction

Design Development

Construction

Conclusion



Before







Introduction

Design Development

Construction

Conclusion



After







Introduction

Design Development

Construction

Conclusion





Introduction

Design Development

Construction

Conclusion

#### Conclusion

- Complied with COA from King County Landmark
- Cost Effective Relative to Replacement Bridge Costs
- Prolonged Structure's Useful Life
- Enhanced Public Safety and Welfare
- Environmental Benefits and Historic Compatibility



|                              | Original Bridge     | Rehabilitated Bridge |
|------------------------------|---------------------|----------------------|
| Lane Width                   | 9 feet              | 12 feet              |
| Vertical Clearance           | 14 feet (as posted) | 16 feet 6 inches     |
| Legal Load                   | 16 Tons             | 25 Tons              |
| Flood Clearance              | ~6 inches           | ~2 feet              |
| Maintenance                  | High                | Low                  |
| Traffic and Pedestrian Rails | Not to Standard     | Meets Standards      |
| Seismic Safety               | Vulnerable          | Upgraded             |
| Water Quality                | No Treatment        | Full Treatment       |



Introduction

Design Development

Construction

Conclusion

#### Acknowledgements

#### **Owner/Client:** KING COUNTY

Bridge & Structures

Jim Markus, Managing Engineer Stephen Jiang, Structural Engineer Jessy Jose, P.E, Project Manager

Construction

Bob Lee, Supervisor Kino Gomez, Resident Engr. Casey Hayes, Inspector

**Contractor:** 

Wilder Construction Phil Bogardus, PM Vance Aeschleman, Superint.



#### Consultant:

ABKJ, Inc.

Pong Jongjitirat, PIC Jim Morris, Engineer Ken Wilson P.E, S.E, Project

Engr./Manager, Currently with Integrity Structural Engineering, PLLC

