

Donald W. White, Aaron Chang, Se-Kwon Jung & Cagri Ozgur Georgia Institute of Technology

> Steel Bridges Session # 2 Western Bridge Engineers' Seminar September 25, 2007

- Overview of interesting results from two horizontally curved bridges studied in the FHWA CSBRP research
 - FHWA TFHRC Composite Test Bridge
 - Representative curved bridge with substantial skew at the bearing lines
- Observations about behavior & best practices

- What are the different ways that cross-frames can be detailed in curved &/or skewed I-girder bridges?
- What are the uses of the different methods?
- What is the impact of web out-of-plumbness on the strength of typical bridges?
- When should the different methods of crossframe detailing be used?

Block G1, G2 & G3 to the camber profiles.
Drill holes & assemble the cross-frames.
Attach bottom flange diagonals between G1 and G2.

Block G1, G2 & G3 to the camber profiles.
Drill holes & assemble the cross-frames.
Attach bottom flange diagonals between G1 and G2.

 Disassemble the cross-frames between G2 and G3. Leave G3 blocked in its camber profile. Set the G1-G2 pair on the abutments.

3. Set girder G3 on the abutments & hold with crane.

4. Install the cross-frames in the order of 1, 2, 3, 4 & 5. Install bottom flange diagonals between G2 & G3.

5. Release all cranes.

5. Release all cranes.

- 6. Construct forms & cast slab in one continuous stage.
- 7. Remove formwork & bottom flange diagonals.

- 6. Construct forms & cast slab in one continuous stage.
- 7. Remove formwork & bottom flange diagonals.

- The displacements, internal stresses & reactions in the completed structure are unique (independent of the construction sequence) within the following limits:
 - The structure is kept elastic
 - The connections are made ideally with zero tolerance
 - The displacement boundary conditions are unaffected by the sequence
 - The no-load geometry of all the components is unique

Implications of Uniqueness

- Most I-girder bridges can be analyzed without needing to simulate the sequence of erection
- Staged casting of the slab *does* make the response *non-unique* (the no-load geometry of the slab depends on the deformations of the bridge at each stage)
- Potential lack-of-fit (in the no-load geometry) due to detailing of the cross-frames affects the bridge response, but the response is unique to the specific initial no-load geometry

Cross-Frame Detailing

No-Load Fit (NLF)

The girders are cambered vertically to offset the dead load deflections. The cross-frames are detailed to connect to the girders in their cambered, plumb, no-load geometry without inducing any stresses due to fit-up.

Total Dead Load Fit (TDLF)

The girders are cambered vertically to offset the dead load deflections. The cross-frames are detailed to connect to the girders in their idealized total dead load geometry (plumb and with the cambers removed due to the dead load deflections).

The drop in the cross-frames is detailed to fit the differential camber between the girders at all locations

Therefore, the cross-frames fit-up "perfectly" with the girders in their no-load geometry

Cross-Frame Detailing, Total Dead Load Fit

Lack of fit between girders and cross-frames in no-load geometry

The girders are forced/twisted into position to connect the cross-frames

Internal stresses are introduced

Total Dead Load Fit Concepts

- Primary goal: plumb girder webs under the total dead load
- The girders must be twisted from their idealized noload position to connect the cross-frames
- This *lack-of-fit* in the no-load geometry induces additional stresses and influences the deflections (e.g., the required cambers) in the completed bridge system
- The above *lack-of-fit* also tends to increase the forces required to connect the deformed components during erection

Girder Mid-Span Positions/Displacements for Test Bridge – *No Load Fit (NLF)*

steel self-weight + concrete dead load

Girder	Load Condition	Elevation (in)	Twist Angle (degrees)	Radial Deflection top / bottom flgs**
G1	Initial no-load cambered position	1.478	0.000	0.000
	Steel + concrete dead load	0.024	-0.770°	-1.120 / -0.450
G2	Initial no-load cambered position	2.805	0.000	0.000
	Steel + concrete dead load	-0.010	-0.837°	-1.156 / -0.426
G3	Initial no-load cambered position	4.300	0.000	0.000
	Steel + concrete dead load	-0.051	-1.039°	-1.253 / -0.338

** Positive toward center of curvature

Girder Mid-Span Positions/Displacements for Test Bridge – *Total DL Fit (TDLF)*

* Girder cambers based on NLF

steel self-weight + concrete dead load

Girder	Load Condition	Elevation (in)	Twist Angle (degrees)	Radial Deflection top / bottom flgs**
G1	Initial no-load cambered position	1.478*	0.000	0.000
	Steel + concrete dead load	0.647	0.024°	-0.371 / -0.392
G2	Initial no-load cambered position	2.805*	0.000	0.000
	Steel + concrete dead load	0.743	-0.038°	-0.397 / -0.364
G3	Initial no-load cambered position	4.300*	0.000	0.000
	Steel + concrete dead load	0.676	-0.210°	-0.469 / -0.285

** Positive toward center of curvature

Influence of NLF vs TDLF, Final Results – Girder G3 Top Flange Lateral Bending Stresses

Influence of NLF vs TDLF, Final Results – Girder G3 Top Flange Major-axis Bending Stresses

CF members Models	1	2	3	4	5
No-Load Fit	55.34	49.02	-47.57	-95.74	-14.63
Total Dead Load Fit	54.76	49.13	-48.29	-94.97	-14.59

Units: kips

Experimental Data (NLF): 94.9 kips

Influence of NLF vs TDLF Detailing on System Strength

Total Applied Load vs. G3 Mid-Span Outside Flange Tip Vertical Deflection

Test Bridge Just Prior to Slab Crushing

G3 Mid-Span Internal Moment vs. Vertical Deflection

Total Applied Load vs. Cross-Frame Bottom Chord Force

(Mid-span cross-frame)

Bridge configuration suggested by Mr. Dann Hall, BSDI Inc.

Girders and cross-frames detailed for no-load fit

- Single-span simply-supported
- Significant skew angles at the bearing lines
- Staggered cross-frames
- L_{as} = 162.5 ft (G1), 159.9 ft (G6)

- $L_b / R = 0.01$ to 0.03
- $L_b / b_f = 5.0$ to 17.2
- D = 72 in
- 7.5 in thick concrete deck

G1 Displacements at End of Slab Casting

G1 Displacements at End of Slab Casting

	Skew angle	фx	фz(Approx.)	φz(FEA)	% Diff.
Left Bearing	54.7	0.01543	0.0218	0.0217	0.4
Right Bearing	58.2	-0.01496	-0.0241	-0.0213	13.1

G1 Flange Radial Displacements at End of Slab Casting

G1 Maximum Internal Moment vs. Vertical Deflection

- What are the different ways that cross-frames can be detailed in curved &/or skewed I-girder bridges?
- What are the uses of the different methods?
- What is the impact of web out-of-plumbness on the strength of typical bridges?
- When should the different methods of crossframe detailing be used?

Thank you for your attention

I'd be happy to address any comments or questions

