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‘| Organization

= Overview of Interesting results from two
horizontally curved bridges studied in the
FHWA CSBRP research

« FHWA TFHRC Composite Test Bridge

= Representative curved bridge with substantial
skew at the bearing lines

= Observations about behavior & best practices



T QuIZ

What are the different ways that cross-frames
can be detailed in curved &/or skewed
|-girder bridges?

What are the uses of the different methods?

What is the impact of web out-of-plumbness
on the strength of typical bridges?

When should the different methods of cross-
frame detailing be used?



( FHWA TFHRC Test Bridge — Plan View
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( Test Bridge Cross-Section
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Test Bridge Construction Segquence

1. Block G1, G2 & G3 to the camber profiles.
Drill holes & assemble the cross-frames.




( Test Bridge Construction Sequence

1. Block G1, G2 & G3 to the camber profiles.
Drill holes & assemble the cross-frames.
Attach bottom flange diagonals between G1 and G2.




( Test Bridge Construction Sequence

2. Disassemble the cross-frames between G2 and G3.
Leave G3 blocked in its camber profile.
Set the G1-G2 pair on the abutments.




( Test Bridge Construction Sequence

3. Set girder G3 on the abutments & hold with crane.

4. Install the cross-frames in the order of 1, 2, 3, 4 & 5.
Install bottom flange diagonals between G2 & G3.
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Test Bridge Construction Segquence

5. Release all cranes.




( Test Bridge Construction Sequence

5. Release all cranes.




( Test Bridge Construction Sequence

6.

7.

Construct forms & cast slab in one continuous
stage.

Remove formwork & bottom flange diagonals.




( Test Bridge Construction Sequence

6. Construct forms & cast slab in one continuous
stage.

/. Remove formwork & bottom flange diagonals.




( Uniqueness

= The displacements, internal stresses &
reactions in the completed structure are
unique (independent of the construction
sequence) within the following limits:
= The structure is kept elastic

= The connections are made ideally with zero
tolerance

= The displacement boundary conditions are
unaffected by the sequence

= The no-load geometry of all the components is
unigque



/| Implications of Uniqueness

= Most I-girder bridges can be analyzed without
needing to simulate the sequence of erection

= Staged casting of the slab does make the
response non-uniqgue (the no-load geometry
of the slab depends on the deformations of
the bridge at each stage)

= Potential lack-of-fit (in the no-load geometry)
due to detailing of the cross-frames affects
the bridge response, but the response Is
unique to the specific initial no-load geometry



( Cross-Frame Detalling

= No-Load Fit (NLF)

The girders are cambered vertically to offset the dead
load deflections. The cross-frames are detailed to
connect to the girders in their cambered, plumb,
no-load geometry without inducing any stresses
due to fit-up.

= Total Dead Load Fit (TDLF)

The girders are cambered vertically to offset the dead
load deflections. The cross-frames are detailed to
connect to the girders in their idealized total dead
load geometry (plumb and with the cambers
removed due to the dead load deflections).



( Cross-Frame Detalling, No-Load Fit

Variable
difference in
camber
elevations

!
I

The drop in the cross-frames is detailed to fit the
differential camber between the girders at all locations

Therefore, the cross-frames fit-up “perfectly” with the girders
in their no-load geometry



( Cross-Frame Detalling, Total Dead Load Fit

Lack of fit between girders and cross-frames in no-load geometry

[

Internal stresses are introduced

—16
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( Total Dead Load Fit Concepts

= Primary goal: plumb girder webs under the total dead
load

= The girders must be twisted from their idealized no-
load position to connect the cross-frames

= This /ack-of-fit in the no-load geometry induces
additional stresses and influences the deflections
(e.g., the required cambers) in the completed bridge
system

= The above /ack-of-fit also tends to increase the
forces required to connect the deformed components

during erection



Girder Mid-Span Positions/Displacements
for Test Bridge — No Load Fit (NLF)

I

steel self-weight + concrete dead load

Girder | Load Condition Elevation | Twist Angle | Radial Deflection
(in) (degrees) | top / bottom flgs**
a1 Initial no-load cambered position 1.478 0.000 0.000
Steel + concrete dead load 0.024 -0.770° -1.120/-0.450
G Initial no-load cambered position 2.805 0.000 0.000
Steel + concrete dead load -0.010 -0.837° -1.156 / -0.426
Initial no-load cambered position 4.300 0.000 0.000
G Steel + concrete dead load -0.051 -1.039° -1.253/-0.338

** Positive toward center of curvature




Girder Mid-Span Positions/Displacements
for Test Bridge — 7otal DL Fit (TDLF)

* Girder cambers based on NLF

steel self-weight + concrete dead load

Girder | Load Condition Elevation | Twist Angle | Radial Deflection
(in) (degrees) | top / bottom flgs**
1 Initial no-load cambered position 1.478* 0.000 0.000
Steel + concrete dead load 0.647 0.024° -0.371/-0.392
o Initial no-load cambered position 2.805* 0.000 0.000
Steel + concrete dead load 0.743 -0.038° -0.397 / -0.364
Initial no-load cambered position 4.300* 0.000 0.000
G Steel + concrete dead load 0.676 -0.210° -0.469 / -0.285

** Positive toward center of curvature



Influence of NLF vs TDLF, Final Results
( . — Girder G3 Top Flange Lateral Bending Stresses
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Influence of NLF vs TDLF, Final Results
( . — Girder G3 Top Flange Major-axis Bending Stresses
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Influence of NLF vs TDLF, Final Results
( . — Mid-span Cross-Frame Forces (Kips)

CF members
m 1 2 3 4 5

No-Load Fit 55.34 49.02 -47.57 -95.74 -14.63
Total Dead Load Fit 54.76 49.13 -48.29 -94 .97 -14.59
T Units: kips

Experimental Data (NLF): 94.9 kips



Influence of NLF vs TDLF
Detailing on System Strength
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Total Applied Load vs. G3 Mid-Span Outside
Flange Tip Vertical Deflection
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- Test Bridge Just Prior to Slab Crushing




G3 Mid-Span Internal Moment vs.
( ~ Vertical Deflection
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Total Applied Load vs.

( / Cross-Frame Bottom Chord Force

(Mid-span cross-frame)
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Representative Curved Bridge with a
( ~Severe Skew

Bridge configuration suggested by Mr. Dann Hall, BSDI Inc.

Girders and cross-frames detailed for no-load fit



‘I Plan View

Center of Curvature X R6 — 766 ft e = 58.2 to 64.60

1

T -~

l Ry = 80T 0 = 54.7 to 60.5°
S=85ft(Typ.) |
 Single-span simply-supported L, /R=0.01t00.03
» Significant skew angles at the bearing lines L,/ b;=5.0to17.2

e Staggered cross-frames eD=72In
e L, =162.5 ft (G1), 159.9 ft (G6) e 7.5 in thick concrete deck



Example of Deflections
( ~at Skewed Bearing Lines

Top Flange Deflection due to
Layover due to Torsional Major-Axis Bending
/

Rotatio;<

Z Deflecti¢n required for
compatipility with cross-frame

Major-Axis Bending Rotation (¢,)

, Torsional Rotation (¢,)
Fixed Bearing

(for illustration)
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( G1 Displacements at End of Slab Casting
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( G1 Displacements at End of Slab Casting
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G1 Top Flange Stresses
~at End of Slab Casting
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G1 Flange Radial Displacements

( “at End of Slab Casting

Radial Deflections (in)

Load factor = 1.0

-2.5
0 0.2 0.4 0.6 0.8 1.0

Normalized Length

== TOP NONLINEAR = BOTTOM NONLINEAR — Relati_ve NONLINEAR
® ® TOP LINEAR “==° BOTTOM_LINEAR Relative LINEAR



G1 Maximum Internal Moment vs.

( / Vertical Deflection
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— Applied Load vs. Cross-Frame Forces
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T QuIZ

What are the different ways that cross-frames
can be detailed in curved &/or skewed
|-girder bridges?

What are the uses of the different methods?

What is the impact of web out-of-plumbness
on the strength of typical bridges?

When should the different methods of cross-
frame detailing be used?



1 Thank you for your attention

L

I'd be happy to address any
comments or questions
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