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Structural Lightweight Aggregate
Manufactured aggregate

• Expanded shale, clay or slate

• Manufactured in a rotary kiln
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ESCS Manufacturing Plants in US

18 plants in the US
See www.escsi.org

for all locations
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Relative Density of                         
Lightweight vs. Normalweight Aggregate

Lightweight aggregates                  
expanded in a rotary kiln

• Range from 1.3 to 1.6

Normalweight aggregates
• Range from 2.5 to 3.0

Soil
Gravel

ESCS Agg.

Lim
estone

Sand

1 lb. of each material
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Lightweight concrete
• Typical density range of 103 to 125 pcf

• AASHTO LRFD Specs:  "… air-dry unit 
weight not exceeding 0.120 kcf …"

• "All lightweight" – fine and coarse 
aggregates are lightweight

• "Sand lightweight" – lightweight coarse 
aggregate and normal weight sand

• Density is checked during casting

Definitions of                              
Lightweight & Normal Weight Concrete
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Definitions of                              
Lightweight & Normal Weight Concrete

Lightweight concrete
• Typical density range of 103 to 125 pcf

• AASHTO LRFD Specs:  "… air-dry unit 
weight not exceeding 0.120 kcf …"

Normal weight concrete
• Typical density range of 140 to 150 pcf
• AASHTO LRFD Specs: "Concrete having a 

weight between 0.135 and 0.155 kcf."
• Density is not a criteria for acceptance



7

Density Range of Structural Concrete
Lightweight concrete

• 110 to 125 lbs per cubic foot

Normalweight concrete
• 140 to 150 lbs per cubic foot (155 in WA)

Specified density concrete
• Between the above ranges
• Combination of LW and NW aggregates
• Especially useful for reducing loads for 

handling, transportation and erection
• Not in design specifications
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Specifying Density of Lightweight Concrete

"Equilibrium density" of LWC is now specified
• Equilibrium density defined in ASTM C 567 

- Density after moisture loss has occurred
- Calculation is standard method for estimating

"Fresh density" needed for QC during casting
• Supplier may establish fresh density
• Designer may specify a fresh density

- Must correspond to specified equilib. density

• Use for handling loads at early age

Be sure to add reinforcement allowance when 
computing dead loads (typically 5 pcf) 
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Specifying Density of Lightweight Concrete
for Bridges

114 – 132 pcf Fresh

4-12 pcf difference

110 – 125 pcf Equilibrium

3 pcf difference

107-122 pcf Owen Dry
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Minimum compressive strength by ASTM
• 2,500 psi

Most ESCS LWA can achieve 
• 5,000 psi 

Some ESCS LWA may achieve
• 7,000 to 10,000 psi

Work with LWA supplier to get mix design with 
desired strength, density and other properties

Design Compressive Strengths for LWC
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Density Range of Structural Concrete

18.7%150 pcf122 pcf10 ksi

20.9%148 pcf117 pcf8 ksi

21.2%146 pcf115 pcf6 ksi

22.8%145 pcf112 pcf4.5 ksi (Deck)

% Reduction       
in Density

NWC 
Density

LWC 
Density

Concrete 
Strength

Table 1 Concrete Densities for Range of Compressive 
Strengths (Castrodale & Harmon – PCI 2007)

Notes:
LWC densities are equilibrium densities
NWC densities are computed using LRFD equations
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Density Range of Structural Concrete

21.3%155 pcf122 pcf10 ksi

23.5%153 pcf117 pcf8 ksi

23.8%151 pcf115 pcf6 ksi

25.3%150 pcf112 pcf4.5 ksi (Deck)

% Reduction       
in Density

NWC 
Density

LWC 
Density

Concrete 
Strength

Table 1 Concrete Densities for Range of Compressive 
Strengths (Castrodale & Harmon – PCI 2007)

Notes:
LWC densities are equilibrium densities
NWC densities are increased based on WSDOT practice
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Design Considerations
Specifications address LWC

• Modifiers for shear, development len., etc.
- Can typically design for them

• Reduced modulus of elasticity
- Increases elastic shortening loss & cambers
- Can be beneficial for substructures & decks

• Time dependent effects:  CR, SH & Losses
- Current research is demonstrating that these 

effects are not significantly different for HS LWC

Specifications do not address SDC



14

Why use LWC in Bridges?

• Improved structural efficiency by reducing 
weight (dead load) of structure

• Reduced handling, transportation and 
erection costs for precast components

• Enhanced durability

Which lead to 

• Reduced initial and long-term costs

• Accelerated project delivery in some cases
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Improved Structural Efficiency
Using LWC typically reduces structure weight 
15 to 25% compared to normalweight concrete

• Increased spans or wider girder spacings

• Reduced structure mass for seismic designs

• Reduced foundation and bearing loads

• Reduced reinforcement and prestressing

• Increased deck width on existing 
superstructure

• Increased live load rating with existing 
superstructure
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Reduced Weight of Precast Components
Improved construction efficiency

• Reduced handling loads in the plant
• Reduced shipping loads
• Reduced number of shipments
• Reduced erection loads
• Larger pieces for same weight

Reduced loads or shipments mean
• Reduced equipment requirements
• Reduced costs
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Accelerated Bridge Construction with LWC
Achieved by reducing construction time and 
improving structural efficiency

• Lighter pieces to handle, ship and erect

• Bigger precast pieces = fewer pieces

• Fewer shipments to site = reduced 
shipping cost & congestion at site

• Fewer spans and substructure units

• Fewer piles and/or smaller footings

• Reduce or eliminate modifications to 
existing structure for rehabs
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Enhanced Durability
• Bond between aggregate and paste

• Elastic compatibility

• Internal curing

• Reduced modulus of elasticity

• Freeze-thaw performance

• Resistance to chloride intrusion

• Wear and skid resistance
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Improved bond between cement paste and 
lightweight aggregates 

• Cellular structure and irregular surface of 
aggregate (mechanical bond)

• Chemistry of the aggregates and cement 
(pozzolanic bond)

• Transition zone

• Improves durability                                        
by reducing micro-
cracking

Bond between Aggregate and Paste
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Modulus of elasticity of lightweight aggregates 
are closer to the modulus of the cement paste 
than normalweight aggregates

• Reduces stress concentrations that form 
around stiffer normalweight aggregate

• Reduces microcracking,                    
autogenous shrinkage,                                      
and shrinkage cracking

• Improves durability by                        
reducing micro-cracking

Elastic Compatibility
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Absorbed moisture within lightweight 
aggregate is released over time into the 
concrete providing enhanced curing

• More complete hydration can occur

• Especially helpful for high performance 
concrete that is nearly impermeable to 
externally applied curing moisture
- Can reduce shrinkage

• Improves tolerance of                     
concrete to improper curing

Internal Curing
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NCHRP Report 380 "Transverse Cracking in 
Newly Constructed Bridge Decks" (1996)

• "Using low-elasticity aggregates should 
therefore reduce thermal and shrinkage 
stresses, and the risk or severity of 
transverse cracking."

• Recommends using concretes with a low 
cracking tendency 
- Low early modulus of elasticity
- Low early strength concrete

Lightweight concrete provides lower modulus 
but retains strength and durability

Reduced Modulus of Elasticity
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LWC bridge decks have demonstrated

• Excellent freezing and thawing 
performance even when lightweight 
aggregate is exposed 

• Excellent resistance to chloride 
penetration at level of reinforcement

• Uniform wear

• Non-polishing aggregate

• High skid resistance

• Quieter pavement?

Durability and Safety
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LWC has improved resistance to Cl ¯ intrusion

Silver Creek Overpass, UT                     
constructed in 1968

Chloride content after 23½ years in service

Resistance to Chloride Intrusion

0.5 lbs / CY1½" to 2"

15.7 lbs / CY7.7 lbs / CY1" to 1½"

18.0 lbs / CY18.0 lbs / CY½" to 1"

20.5 lbs / CY36.7 lbs / CY0" to ½"

NWC Appr. SlabLWC DeckDepth
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San Francisco-Oakland Bay Bridge
• Upper deck constructed with lightweight 

concrete in 1936 – still in service today

Cores of LW upper deck taken in 1979
• Surface was highly contaminated with Cl ¯

• Concentration < 1.0 lb/cy with depth
• No spalling

Cores of NW deck on approaches taken in 1984
• Cl ¯ content up to 10 lb/cy found to 4" depth
• Some spalling on NW decks

Resistance to Chloride Intrusion
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• Two lane bridge

• LWC deck 

• Replaced after                             
34 years in                          
service

Boulevard Bridge, Richmond, VA

• Minimal wear

• Uniform wear

• No deterioration

• No corrosion
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Examples of                              
Bridge Construction Projects               

using LWC

Rehabilitation Projects 

New Construction
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Woodrow Wilson Bridge, Washington, DC
Deck replaced in 1983
LWC full depth deck panels

• Allowed thicker slabs
- Improved stiffness and durability

• Allowed wider deck
- 38 ft to 44 ft roadway width

• Improvements could be made without                
strengthening the existing superstructure

• Precast decks reduced impact on traffic 
No deterioration after 13 years of service
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Lewis & Clark Bridge, OR & WA
Completed in 2004

Deck replacement on                                      
existing truss spans                                          

Full-width precast deck units with steel 
floorbeam system were prefabricated to                  
speed construction

LWC was used to
• Reduce weight for                                  

installation of units
• Reduce load on                                         

existing truss spans
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Coleman Bridge, Yorktown, VA
Original structure completed in 1952

• 26 ft wide with 2 lanes

Bridge replaced in 1996
• 74 ft wide with 4 lanes and shoulders

Lightweight deck option was selected based 
on cost savings and good experience in VA

With reduced deck weight
• The pier caps only had to be              

widened
• Reduced the steel required in new trusses
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San Francisco-Oakland Bay Bridge, CA
Completed in 1936 

Upper deck was LWC

• Reduced load on bridge

Lower deck reconfigured                                
for highway traffic in 1958 

New lower deck was LWC

• Reduced load on bridge

Both LWC decks are still in service
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First bridge built in 1952

LWC deck in suspension                            
spans

• Reduced load on bridge

NWC decks were deteriorated in 1975

• Replaced with LWC decks

Second bridge built in 1975

• LWC in all decks because of good 
performance on first bridge

Chesapeake Bay Bridges, Annapolis, MD
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US 23-119 over Shelby Creek, KY
Completed in 1991

SDC for spliced girders                                      
to achieve 218'-6" spans

• Alternate design to a                                      
steel structure

• Reduced weight for handling (125 - 130 pcf)

• Largest girder > 72 tons

Trendsetting bridge still in service
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Route 33 Bridges at West Point, VA
Two demonstration projects now completed
LWC girders and decks

• Large bulb-tee approach spans
• Two 200'-240'-240'-200' spliced units with 

haunched pier segments on each bridge
• Reduced foundation requirements

Research being conducted with project
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LWC CIP Segmental Box Girder Bridges in CA

Napa River Bridge (1977)
Napa, CA

New Benicia-Martinez Bridge (2007)
Also LWC Deck on Ex. Truss (1962)

Parrots Ferry Bridge (1978)
Northern CA
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Variable depth, cast-in-place, post-tensioned, 
segmental concrete box girder bridge

Four span continuous unit crossing a deep 
fjord used for shipping

Constructed using balanced cantilever method

Located 186 miles north of the Arctic Circle

Bridge opened                                                   
in 1998

Raftsundet Bridge, Norway
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The central 735 ft (224 m) of the main span is 
high performance lightweight concrete

• Hardened density of 125 lb/ft3 (19.75 kN)

• 28-day compressive strength (cube) of 
more than 8,700 psi (60 MPa)

A significant testing program proved that 
lightweight concrete could be successfully 
pumped

978 ft

735 ft

Raftsundet Bridge, Norway
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Bergsøysundet Bridge - Norway
• Completed in 1992
• 7 LWC pontoons in 844 m floating portion
• Pontoons are 34 x 20 x 5 to 7 m

Nordhordland Bridge – Norway
• Completed in 1994
• 10 LWC pontoons in 1246 m floating 

portion
• Pontoons are 42 x 20.5 x 7.38 m
• LWC deck in cable-stay main span

Floating Bridges
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Norwegian floating bridges
• Same LWC specification for both bridges
• LWC used to reduce draft

- Ecological considerations
- Reduced wave loads

2nd Lake Washington Bridge (Evergreen Point)
• Completed in 1963
• Some portion of pontoons is LWC
• Difficult to find information

Floating Bridges
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Cost of Lightweight Concrete
Increased cost of aggregate

• Additional processing

• Shipping from the manufacturing plant
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  LWA     
& LWC 

NWA     
& NWC 

Relative 
Cost  

  A B A/B (%) 

Cost of coarse aggregate  $/ton 45 10 450% 

Coarse aggregate for 1 yd3 of concrete  lb 900 1710 -- 

Cost of coarse aggregate for 1  yd3of concrete $/yd3 20.25 8.50 238% 

Cost increase with lightweight aggregate $/yd3 11.75 -- -- 

Typical cost of concrete delivered to project, including 
small increase for additional cement in lightweight 
concrete  

$/yd3 85 70 121% 

Cost of concrete in-place, including formwork, 
reinforcement, conveying, finishing and curing  $/yd3 365 350 104% 

LWA – Lightweight aggregate; LWC – Lightweight concrete 
NWA – Normal weight aggregate; NWC – Normal weight concrete 

From Holm & Bremner, 2000

Cost Comparison for LW Concrete Deck
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Cost Premium for Lightweight Deck Concrete
Typical range of cost premium per CY of 
deck concrete

• Assuming 8 in. thick deck

$0.74 / SF$30 / CY

$0.99 / SF$40 / CY

$1.23 / SF$50 / CY

$0.62 / SF$25 / CY

$0.49 / SF$20 / CY

Cost / SFCost / CY
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Cost Premium for LWC Girders
• $30 / CY cost premium for LWC
• Girder spacing of 10 ft

$5.92 / LF

$5.50 / LF

$5.08 / LF

$8.85 / LF

$7.12 / LF

$5.39 / LF

Cost Prem. / LF

$0.71 / SFPCEF XB6347

$0.89 / SFPCEF XB9547

$0.51 / SFPCI BT-54

$0.59 / SFPCI BT-72

$0.55 / SFPCI BT-63

$0.54 / SFPCEF XB3147

Cost Prem. / SFGirder Section
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Cost Comparisons for Lightweight Concrete
Simple comparisons neglect important factors

• Reduced handling and transportation costs

• Reduced erection costs

• Reduced time of construction

• Reduced strand and reinforcement
- For one bridge, a 20-25% reduction in post-

tensioning has been estimated

• Reduced cost of substructure & foundations
- For some bridges, a 10-20% reduction in pilings   

or foundation costs has been estimated
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Cost Comparisons for Lightweight Concrete
To take full advantage of potential cost 
reductions from using LWC

• Typically requires a complete preliminary 
design including foundations

• Increased effort in early design phases

Can pay large dividends in reduced 
construction costs

The real test ...
• Many bridges have been successfully 

constructed using lightweight concrete
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Rugsundet Bridge, Norway
Completed in 2000

Using LWC in center span of                           
box girder allowed design alternate

• Increased main span from 564 ft to 623 ft 
using same quantity of post-tensioning

• Moved foundations into shallower water or 
to the edge of the water

• Reduced length of ballast-filled side spans

• Shortened overall length of structure 33 ft

LWC alternate bid was 15% less than NWC bid 
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For more information, please call, or visit      
www.txi.com or   www.escsi.org

ROTARY KILN PRODUCED                          
STRUCTURAL LIGHTWEIGHT AGGREGATE 


