

Bill Williams River Bridge Fire Damage Assessment & Repair

Martha Davis, PE Paul Tremel, PE HDR Engineering

September 25, 2007

Western Bridge Engineers' Seminar Boise, Idaho

Project Location: Parker, Arizona

Bridge Basics

- Built in 1967
- Superstructure:
 - Two 30' Approach Spans: Concrete Slabs
 - Fourteen 76' Main Spans: 6 Precast
 Prestressed Concrete Type III Girders

WEST

Ю

July 2006: Fire on Bridge

- July 28, 2006, approx. 3pm
- Diesel tanker overturned near middle of bridge
- ~7,600 gallons of fuel burned
- Fire lasted a few hours on bridge
 Affected spans 8, 9, and 10
- Fire lasted over 2 weeks in adjacent wildlife area

July 2006: Fire on Bridge

After the Fire

Ν

After the Fire

East Side of Bridge, Pier 8 & Span 9 ($N \rightarrow$)

\leftarrow Direction of wind during fire

Girder/Deck Damage

What to do?

Inspect the damaged areas

- Perform materials testing
- Load rate the fire-damaged spans of bridge
- Develop alternative solutions
- Prepare PS&E documents for repair

Inspection

Inspection: Deck

Inspection: Girders

- Spalled concrete on top and bottom flanges
- No visible deflection

Inspection: Girders

Ð

Inspection: Girders

- Exposed mild reinforcement
- Several locations of exposed
 prestressing strands

Inspection: Pier

Pier Cap
Pier Columns

Materials Testing

- Performed by CTL Group (Skokie, IL)
- Non-destructive testing
- Concrete Cores
- Reinforcing & P/S Steel Samples

Materials Testing: Non-Destructive Evaluation

- Methods:
 - Impulse Response
 - Impact Echo
- Measures consistency and relative damage of material
- Results used to extrapolate the concrete cores to the rest of the bridge

DR | ON Ma

Materials Testing: Samples Taken

- Concrete Cores
 - Barrier
 - Deck
 - Girder Web
 - Pier Cap
- Reinforcing Steel
 - Mild: girder stirrup & deck
 - Prestressing: from end of girder

Materials Testing: **Petrographic Analysis**

 Depth of Microcracking Paste Alteration - Color Change - Softening Carbonation

Materials Testing: Sample Strengths

Concrete Strengths

	Strength (f'c)	Post-Fire
Element	per As-Builts	Test Results
Deck	3,000 psi	3,950 psi *
Girder	4,800 psi	5,800 psi
Pier Cap	2,500 psi	5,050 psi

* East overhang concrete lost significant portion of strength and should not be considered in structural evaluation

Reinforcing Steel

HD

- Mild fy = 52,300 psi
- P/S fy = 255 292 ksi per microhardness test

Materials Testing: How to use the results?

- Near-term assessment: Adjust section properties to neglect concrete that exhibits paste alteration, softening, and color change
- Long-term assessment: Adjust section properties to neglect depth of abnormal microcracking

Load Rating: Deck

• Near-term (max. depth of paste alteration):

- 0.8" on top
- 0.2" on bottom
- Long-term (max. depth of microcracking):
 - 1.2" on top
 - 1.7" on bottom

Load Rating: Results

Inventory Ratings

		Pre-Fire		Post-Fire: Short Term		Post-Fire: Long Term	
Element	Mode	HS	Tons	HS	Tons	HS	Tons
Deck	Flexure, LFD	28.2	50.8	26.2	47.2	16.9	30.4
Girder	Flexure, LFD	33.6	60.5	25.0	45.0	22.6	40.6
Girder	Flexure, ASD	24.9	44.8	20.4	36.8	18.1	32.6
Girder	Shear, LFD	19.9	35.8	18.8	33.9	17.5	31.5

Operating Ratings

		Pre-Fire		Post-Fire: Short Term		Post-Fire: Long Term	
Element	Mode	HS	Tons	HS	Tons	HS	Tons
Deck	Flexure, LFD	47.0	84.6	43.7	78.7	28.2	50.8
Girder	Flexure, LFD	56.0	100.8	41.7	75.1	37.7	67.8
Girder	Shear, LFD	33.2	59.8	31.5	56.6	29.2	52.6

HOR ONE COMPANY Many Solutions

- 1 **Close east shoulder**
- Replace east deck overhang in spans 2. 8 - 10
- Replace east girder in span 9 and east 3. deck overhang in spans 8 - 10
- **Replace span 9 and exterior girders in** 4. spans 8 and 10

- Advantages
 - Least cost
 - Least environmental & traffic impacts
- Disadvantages
 - Service life of bridge reduced
 - Roadway width permanently narrowed
 - Width of travel lane less than standard

- Replace structural elements with significantly reduced section properties
- Surface remediation of other members (girders & pier cap)

Advantages

- Existing roadway width is maintained
- Most severely damaged elements are replaced
- Less expensive to construct than Alternatives 3 & 4
- Disadvantages
 - Longer construction time than Alt. 1
 - Will require future improvements to maintain long-term serviceability

Surface remediation of other members

- Existing roadway width is maintained
- Severely distressed elements are replaced
- Less expensive to construct than full replacement of damaged spans
- Disadvantages
 - Longer construction time than Alts. 1 & 2
 - Will require future improvements to maintain long-term serviceability
 - Environmental impacts

Replace fire damaged structural elements
Restore bridge to pre-fire condition

New Girder, Typ,

<u>SPAN 9</u>

-Girder 4

Girder 5

EAST

Girder

Girder 3

Girder 2-

Girder 1

WEST

Advantages

- Existing roadway width is maintained
- Load capacity of bridge is restored to prefire capacity
- Long-term serviceability of bridge is restored to its pre-fire condition
- Disadvantages
 - Most expensive to construct
 - Longest construction time
 - Environmental impacts

Alternatives: Construction Costs

- Alternative 1: \$ 416,000
- Alternative 2: \$ 711,000
- Alternative 3: \$ 861,000
- Alternative 4: \$1,859,000

Recommendations

- Immediate
 - Close the east shoulder
- Near Term
 - Alternative 2: replace east side of deck to girder 5 in spans 8-10
 - Monitor bridge for further concrete deterioration
- Long Term
 - Alternative 4: replace span 9 and portions of spans 8 & 10

Conclusions

- Considering severity of fire, the bridge is in generally good condition, except east overhang
- Most severe damage localized to exterior girders and deck overhang
 - Fuel source through drain holes
 - Availability of oxygen
- Precast, prestressed girders performed well
- Concrete and reinforcing strengths were consistent with design values

Bill Williams River Bridge Fire Damage Assessment & Repair

Martha Davis, PE Paul Tremel, PE HDR Engineering

September 25, 2007

Western Bridge Engineers' Seminar Boise, Idaho