Integral Abutment Bridges

David Liu, Ph.D., PE, SE, Paramtrix

Steve Maltby, PE, Parametrix

Kenneth F. Dunker, PE, Iowa DOT

Outline

- Foundation Concepts
- Foundation Types
- Design Methods

Integral Abutments

- Eliminate expansion joints
- Eliminate expansion bearings
- Increase design efficiency
- Add redundancy and capacity for catastrophic events
- Speed up construction
- Reduce tolerance problems

Foundation Concepts

- Fixed-head pile
- Pinned-head pile
- Hinged abutment
- Fixed-base pile
- Prebored hole
- Sleeved pile

Fixed-Pile Head

Pinned-Pile Head

Hinged-Abutment Concept

Fixed-Base and Sleeved-Pile

Prebored-Hole Concept

Foundation Types

- Steel H-pile
- Precast prestressed-concrete pile
- Pipe pile (steel encased concrete pile or metal shell pile)
- Caisson wall or drilled shaft
- Combined H-pile (or W-section) and drilled shaft
- Timber pile, sheet pile and spread footing

H-Pile Orientation

- 2004 survey Nearly half of the states preferred steel H-piles oriented for weak axis bending
- Oregon, Iowa, New York, Pennsylvania, etc.
- One-third preferred the piles oriented for strong axis bending
- Idaho, Tennessee, Colorado, Illinois, etc.

Limitations

- Max 2-inch thermal movement
- Skew <= 30 degrees (or 45 degrees)
- Straight bridges (Oregon, R=1200 ft min) Thermal Concrete Steel Skew
 Idaho 650' 350'
 Oregon 2" 30°

Stabbed-Shaft Foundation Concept

Composite Section (Colorado)

Caisson Wall Foundation

ABUTMENT ELEVATION

Caisson Wall & W12x72 in Caissons

Design Methods

- Equivalent cantilever model, hand calcalation - Greimann et al. 1987, Iowa State University
- Equivalent column model, COM624P software - Wasserman 2001

Equivalent Pile Cantilever Model

- Final Report HR-273 and Addendum to HR-273 – Greimann et al. 1987
- Alternate one elastic behavior for shorter spans
- Alternate two plastic behavior for longer spans
- Step by step hand solutions

Equivalent Cantilever

Actual System

Equivalent Cantilever

Actual System

DESIGN PROCEDURE Equivalent Column Model

- Wasserman and Walker 1996, Wasserman 2001
- COM624P software to determine points of inflection
- Pile between those points treated as a column subject to buckling
- Pile checked with usual column procedure

Unfactored Bending Moment (in-kips)

H-Pile with CMP (lowa)

Stabbed H-Pile (lowa)

Stabbed H-Pile (lowa)

Stabbed H-Pile (lowa)

T-REX (Colorado)

T-REX (Colorado)

Foundations for Integral Abutments

Kenneth F. Dunker and Dajin Liu

ASCE, Practice Periodical on Structural Design and Construction FEB 2007

Questions?