LOAD RATING OF PRESTRESSED CONCRETE GIRDER BRIDGES

Western Bridge Conference 2007

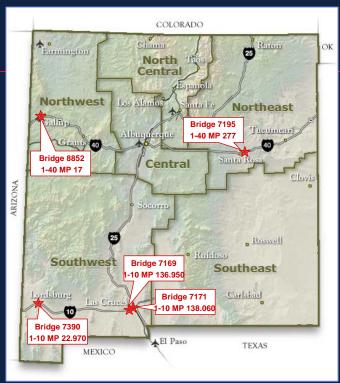
Load Rating of Prestressed **Concrete Girder Bridges: Interior vs. Exterior Girders**

NEW MEXICO STATE UNIVERSITY

Introduction

- Importance of Bridge Evaluation
 - Viaducts within the U.S. Highway infrastructure are on average 40 years old with a theoretical design life of 50 years.
- 2006 National Bridge Inventory: Deficient/Obsolete
 - Nationwide: 26%
 - New Mexico: 692 Bridges (291 Obsolete, 401 Deficient)
- Vehicle Miles of Travel (VMT) have increased 148% in the last 30 years.


Objective

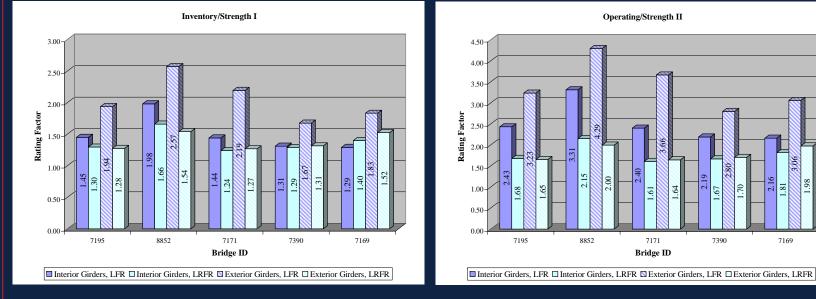

- Support the AASHTO Subcommittee on Bridges and Structures implementation of load and resistance factor design by continuing the transition from LFR to LRFR.
- Rate 5 prestressed concrete girder bridges, courtesy of the NM bridge inventory, for LFR and LRFR using the Bridge Rating and Analysis of Structural Systems (BRASS) Software.
- Specific Objectives
 - Identify differences and trends in LFR and LRFR rating factors.
 - Compare rating factors for interior and exterior girders.
 - Examine trends in rating factors as affected by bridge geometry.

Bridge Rating and Analysis of Structural Systems (BRASS) Software

- Used to load rate superstructure elements.
- BRASS-GIRDER is current with the 16th edition of the AASHTO Standard Specifications for Highway Bridges (1996), including the 1997 thru 2000 Interims.
- BRASS-GIRDER (LRFD) is current with the 2nd edition of the AASHTO LRFD Bridge Design Specifications (1998), including the 2000 Interim.

Bridge Sample

Bridge 7171 12 Spans: all similar, Length of 80'6-1/4" 7 AASHTO-III girders spaced at 6'8" 8 harped & 30 straight stress relieved strands Conc. comp. strength of 5 ksi & 4.5 ksi initial


NEW MEXICO STATE UNIVERSITY

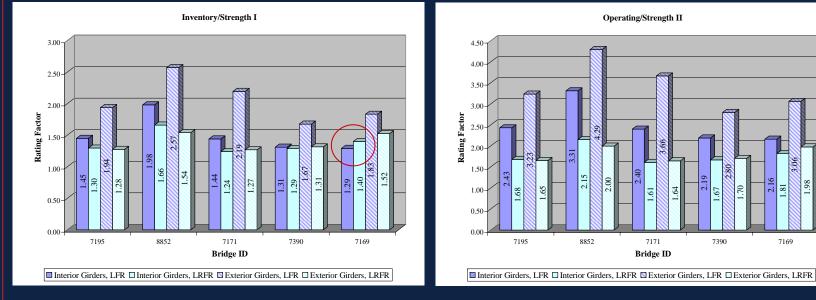
Bridge Description

			Bridge ID		
	7195	8852	7171	7390	7169
Span Length	107'	97'	80' 6 ¼ "	58 ¾'	38 ¼'
Girder Type	AASHTO-V	AASHTO-IV	AASHTO-III	AASHTO-III	AASHTO-II
No. of Girders	5	6	7	6	5
Girder Spacing	9' 7"	7'	6' 8"	9' 1"	9' 9"
No. of Harped Strands	18	10	8	4	4
No. of Straight Strands	44	34	30	16	14
Strand Type	Stress- relieved	Low- relaxation	Stress- relieved	Stress- relieved	Stress- relieved
Strand Diameter, in.	7/ ₁₆	1/2	7/ ₁₆	1/2	7/ ₁₆
Stirrup Spacing, in.	11	4	15 ¼	8	10
ť _c , ksi	5	5.5	5	5	5
f' _{ci} , ksi	4.5	4.75	4.5	4.5	4.5
Slab thickness, in.	7 ¼	8	6 7⁄ ₁₆	8	7 % ₁₆
Skew, degrees	~ 21	~ 19	20	~ 20	30
FWS, lbs/ft ²	15	30	15	15	15

Note. Similar for all bridges: 1.) f'cslab = 3 ksi and 2.) transverse reinforcement consists of #4 double leg stirrups.

Results Critical Rating Factors - Flexure

Inventory / Strength I


Operating / Strength II

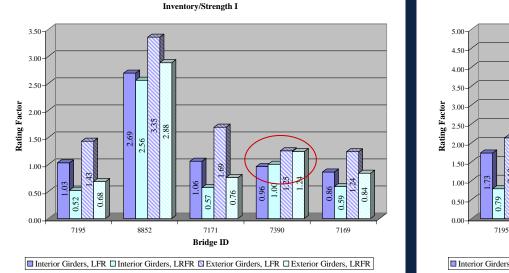
NEW MEXICO STATE UNIVERSITY

Parametrix

7169

Results Critical Rating Factors - Flexure

Inventory / Strength I


Operating / Strength II

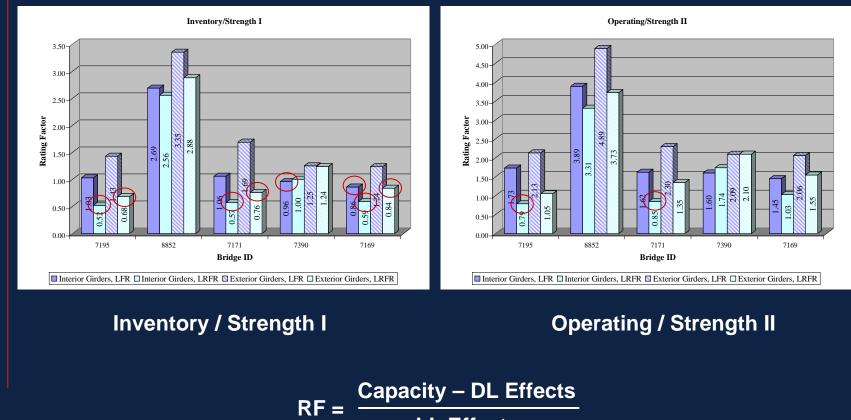
NEW MEXICO STATE UNIVERSITY

Parametrix

7169

Results Critical Rating Factors - Shear

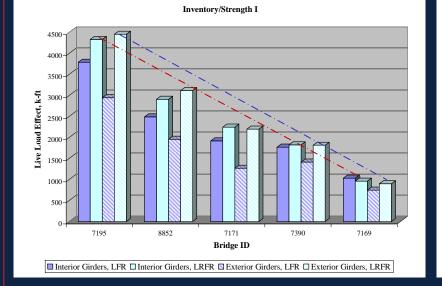
Inventory / Strength I

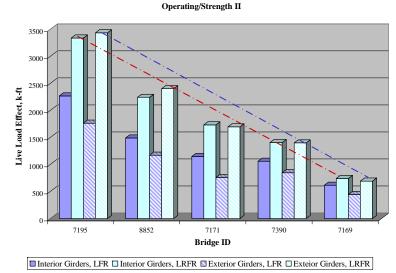

5.00 6.00

Operating/Strength II

Operating / Strength II

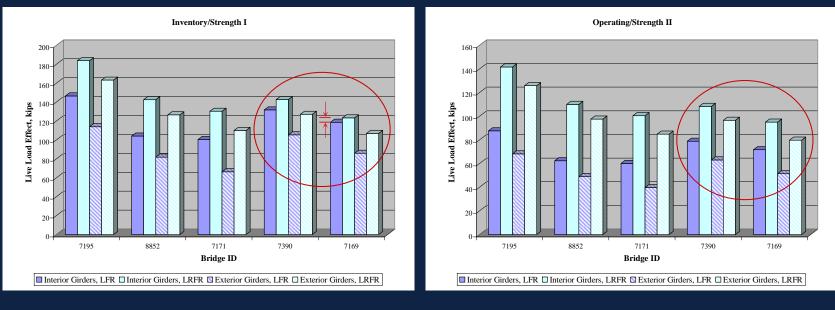
NEW MEXICO STATE UNIVERSITY


Results Critical Rating Factors - Shear


LL Effects

NEW MEXICO STATE UNIVERSITY

Results Critical Live Load Effect - Flexure


Inventory / Strength I

Operating / Strength II

NEW MEXICO STATE UNIVERSITY

Results Critical Live Load Effect - Shear

Inventory / Strength I

Operating / Strength II

NEW MEXICO STATE UNIVERSITY

- Dynamic Load Allowance or Impact Factor
 - LFR:
 - Based on span length
 - Ranges from 21.6% to 30% for the bridges under consideration
 - Shorter span bridges produce larger impact factor, therefore producing effects similar to LRFR
 - LRFR: 33%
- Live Load Factors

LFR	LRFR
Inventory – 2.17	Strength I – 1.75
Operating – 1.30	Strength II – 1.35

NEW MEXICO STATE UNIVERSITY

• Distribution Factors

Distribution Factor	Girder	7195	8852	7171	7390	7169
LFR	Interior	0.871	0.636	0.606	0.826	0.886
	Exterior	0.677	0.500	0.400	0.661	0.641
LRFR – Shear	Interior	0.924	0.719	0.719	0.890	0.935
	Exterior	0.820	0.660	0.607	0.793	0.810
LRFR - Moment	Interior	0.798	0.616	0.620	0.797	0.834
	Exterior	0.820	0.660	0.607	0.793	0.780

• Distribution Factors

Girder Spacing		S=9'7"	S=9'7"			S=9'9"
Distribution Factor	Girder	7195	8852	7171	7390	7169
LFR	Interior	0.871	0.636	0.606	0.826	0.886
	Exterior	0.677	0.500	0.400	0.661	0.641
LRFR – Shear	Interior	0.924	0.719	0.719	0.890	0.935
	Exterior	0.820	0.660	0.607	0.793	0.810
LRFR - Moment	Interior	0.798	0.616	0.620	0.797	0.834
	Exterior	0.820	0.660	0.607	0.793	0.780

• Distribution Factors

Girder Spacing		S=9'7"	S=7'	S=6'8"	S=9'1"	S=9'9"
Distribution Factor	Girder	7195	8852	7171	7390	7169
LFR	Interior	0.871	0.636	0.606	0.826	0.886
	Exterior	0.677	0.500	0.400	0.661	0.641
LRFR – Shear	Interior	0.924	0.719	0.719	0.890	0.935
	Exterior	0.820	0.660	0.607	0.793	0.810
LRFR - Moment	Interior	0.798	0.616	0.620	0.797	0.834
	Exterior	0.820	0.660	0.607	0.793	0.780

• Distribution Factors

Distribution Factor	Girder	7195	8852	7171	7390	7169
LFR	Interior	0.871	0.636	0.606	0.826	0.886
	Exterior	0.677	0.500	0.400	0.661	0.641
LRFR – Shear	Interior	0.924	0.719	0.719	0.890	0.935
	Exterior	0.820	0.660	0.607	0.793	0.810
LRFR - Moment	Interior	0.798	0.616	0.620	0.797	0.834
	Exterior	0.820	0.660	0.607	0.793	0.780

LRFR – Flexure: Similar for Interior and Exterior Girders

• Distribution Factors

Distribution Factor	Girder	7195	8852	7171	7390	7169
LFR	Interior	0.871	0.636	0.606	0.826	0.886
	Exterior	0.677	0.500	0.400	0.661	0.641
LRFR – Shear	Interior	0.924	0.719	0.719	0.890	0.935
	Exterior	0.820	0.660	0.607	0.793	0.810
LRFR - Moment	Interior	0.798	0.616	0.620	0.797	0.834
	Exterior	0.820	0.660	0.607	0.793	0.780

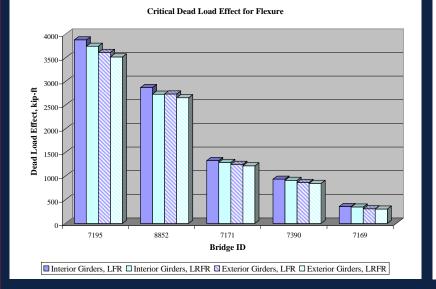
LRFR – Flexure: Similar for Interior and Exterior Girders

LRFR – Shear: Smaller for Exterior Girder

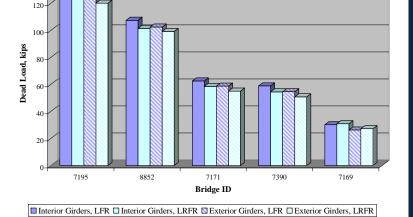
NEW MEXICO STATE UNIVERSITY

• Distribution Factors

Distribution Factor	Girder	7195	8852	7171	7390	7169
LFR	Interior	0.871	0.636	0.606	0.826	0.886
	Exterior	0.677	0.500	0.400	0.661	0.641
LRFR – Shear	Interior	0.924	0.719	0.719	0.890	0.935
	Exterior	0.820	0.660	0.607	0.793	0.810
LRFR - Moment	Interior	0.798	0.616	0.620	0.797	0.834
	Exterior	0.820	0.660	0.607	0.793	0.780


LRFR – Flexure: Similar for Interior and Exterior Girders

LRFR – Shear: Smaller for Exterior Girder


LFR: Smaller for Exterior Girder

- Design Loads
 - LRFR: HL-93
 - LFR: HS-20
- Effects of Skew
 - Only considered in LRFR for skews > or = 30°
 - With the exception of Bridge 7169, the effects of skew are negligible.
 - Bridge 7169 was designed with a skew of 30°, therefore slightly reducing the distribution factor.

Results Critical Dead Load Effect

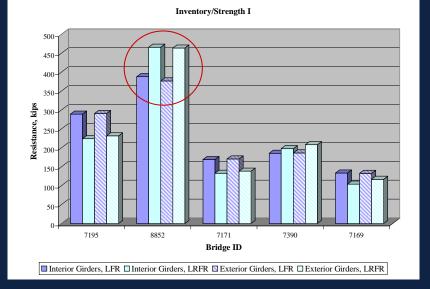
Flexure

Critical Dead Load Effect for Shear

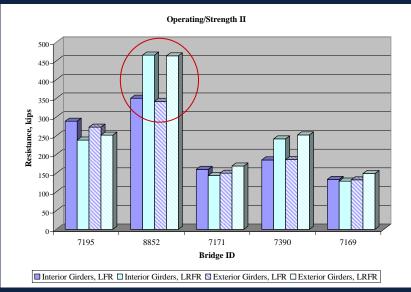
140

Shear

NEW MEXICO STATE UNIVERSITY


Results Critical Dead Load Effect

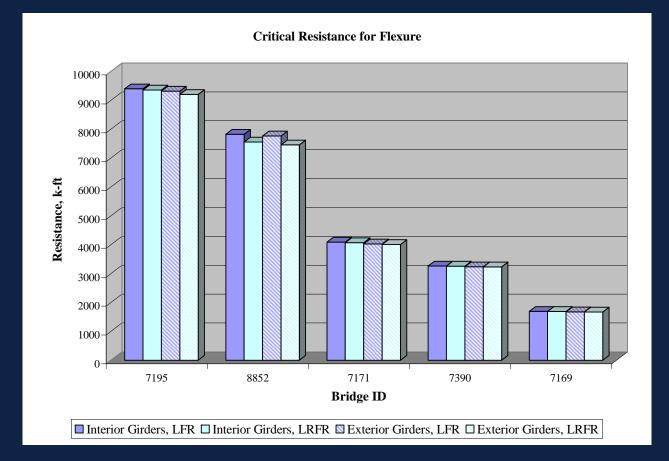
- Dead Load Factors
 - LFR: 1.3
 - LRFR: 1.25DC + 1.50DW
- Dead load effects due to shear are affected by the location of the critical section.


Method	Level/ Limit State	Bridge ID				
		7195	8852	7171	7390	7169
LFR	Inventory/Operating	100.27	100.46	100.26	100.38	100.95
LRFR	Strength I	100.42	100.49	100.44	100.60	100.73
	Strength II	100.46	100.46	100.48	100.70	100.73

Larger critical sections result in smaller dead loads since the point of interest is further from the support.

Results Critical Resistance - Shear

Inventory / Strength I


Operating / Strength II

NEW MEXICO STATE UNIVERSITY

Results Critical Resistance - Shear

- Notable differences between LFR and LRFR
 - Angle of compressive stresses, θ
 - Location of critical section
- Notable differences in Figure (Critical Shear Resistance)
 - Concrete Compressive Strength
 - Stirrup Spacing
 - Strand Type: low-relaxation vs. stress relieved
- General Comparisons
 - Shear resistance depends on an interaction of variables

Results Critical Resistance – Flexure

NEW MEXICO STATE UNIVERSITY

Conclusions Contributing Parameters

- Flexure
 - Contributing Parameters: Live Load Effects
 - Negligible Parameters: Dead Load Effects and Flexural Resistance
- Shear
 - Contributing Parameters: Live Load Effects and Shear Resistance
 - Negligible Parameters: Dead Load Effects

Conclusions Comparison of Rating Factors - Flexure

- LRFR method yielded lower rating factors, with the longer span bridges demonstrating a larger deviation between LFR and LRFR
- Operating/Strength II limit state showed greater variance between LFR and LRFR when compared to Inventory/Strength I limit state
- LRFR produced similar rating factors between the interior and exterior girders
- LFR yielded larger rating factors for the exterior girders
- Exterior girders showed a larger discrepancy between rating method (LFR vs. LRFR)
- All five bridges are structurally adequate (i.e. rating factor > 1)

Conclusions Comparison of Rating Factors - Shear

- LRFR method yielded lower rating factors
- Operating/Strength II ratings displayed a more notable difference in rating method than Inventory/Strength I
- LFR and LRFR rating factors are greater for the exterior girders with LFR yielding a larger discrepancy in values between the exterior and interior girders
- A number of bridges are structurally inadequate (i.e. rating factor < 1.0)

Conclusions General Comparisons

- LRFR method generally resulted in lower rating factors for flexure and shear
- The shorter span bridges were often controlled by the LFR method
- The shear ratings typically controlled over the flexure ratings

Recommendations

- Further investigation of the contribution of the concrete to the shear resistance is recommended
- Further research relating to LRFR is suggested. Parameters not studied in this research should be considered, in particular continuous span bridges. Larger samples are recommended
- Further comparison of the applied live loads, in particular permit loads, is recommended

Acknowledgements

- The authors would like to thank the New Mexico Department of Transportation (NMDOT) and the Wyoming Department of Transportation (WYDOT) for supplying the NM bridge plans/other supplementary information and the Bridge Rating and Analysis of Structural Systems (BRASS) software, respectively
- The authors also extend their sincerest gratitude to the Federal Highway Administration (FHWA) and NMDOT for funding the research presented herein

Thank You

NEW MEXICO STATE UNIVERSITY