

The Link Slab

Solution to Widening the I-5 Bridge in Everett, WA

Warren Wilson, PE, SE Jeff McGuire, PE BERGER/ABAM Engineers

Typical Section

Typical Link Slab Section

Link Slab Design Objectives

Strength Limit State:
Strength to resist loads

Extreme Event (475-yr earthquake):

- Life Safety
 - Ductility to accommodate rotations without significant loss of concrete section (spalling)
 - protect gravity load resistance
 - prevent falling debris hazard

Hinge Rotation

• Demand: $\theta_u = 0.067$ radians

Capacity: θ_n = hinge length × curvature

Hinge Length References

- Kennedy (1975)
- Berdette & Bernal (1978)
- Paulay & Priestley (1992)
- Priestley, Seible, & Calvi (1996)

used

Hinge Length Model

Priestley, Seible, & Calvi (1996):

BERGER / ABAM

Link Slab Hinge Length

Concrete Strength

Nominal Concrete Cylinder Strength: $f'_c = 6$ ksi
 Expected Cylinder Strength: $f'_{ca} = 1.53 f'_{ca} = 9.2$ ksi

Expected Flexural Strength:

f'_{ce} = 0.85 f'_{ca} = 1.3 f'_c = 7.8 ksi

Concrete Strength

• Nominal Concrete Cylinder Strength: $f'_c = 6$ ksi• Expected Cylinder Strength: $f'_{ca} = 1.53 f'_{ca} = 9.2$ ksi• Expected Flexural Strength: $f'_{ce} = 0.85 f'_{ca} = 1.3 f'_{c} = 7.8$ ksi

 Estimating Flexural Overstrength:
 recommended by Caltrans Sesimic Design Criteria (2004) $f'_{ce} = 1.3 f'_{c}$

Concrete Strain

Spalling Strain – observed ¹:

 $\varepsilon_{\rm sp} = 0.005 - 0.010$

Model Strains²: spalling: peak stress:

 $\epsilon_{sp} = 0.005$ $\epsilon_{c0} = 0.002$

¹ Priestley, Seible, & Calvi (1996)

² Caltrans (2004) Sesimic Design Criteria.

Curvature vs. Strain

BERGER ABAM

Rotation vs. Strain

1

2

Western Bridge Engineers' Seminar

Concrete Strain

Spalling Strain¹:

No-Spall Design Criteria²:

Project Strain Demand:

 $\varepsilon_{sp} = 0.005$ $\varepsilon_{c} \leq 0.004$ $\varepsilon_{u} = 0.0045$

Caltrans (2004) Sesimic Design Criteria.

Ferrito et al. (1999) Seismic Criteria for California Marine Oil Terminals. Design Criteria for Serviceability Limit State (72-yr earthquake).

1

2

Western Bridge Engineers' Seminar

Concrete Strain

Spalling Strain¹:

 $\epsilon_{sp} = 0.005$

- No-Spall Design Criteria²:
- **Project Strain Demand:**

- $\varepsilon_{\rm c} \leq 0.004$
 - $\varepsilon_u = 0.0045$
- Acceptable strain for Life Safety at Extreme Event (475-yr) Limit State
- Caltrans (2004) Sesimic Design Criteria.
- Ferrito et al. (1999) Seismic Criteria for California Marine Oil Terminals. Design Criteria for Serviceability Limit State (72-yr earthquake).

