Precast Prestressed Concrete Pavement (PPCP) for Rapid Bridge Approach Slab Reconstruction

Western Bridge Engineers' Seminar 24-26 September 2007 Boise, Idaho

> David K. Merritt, P.E. Transtec Group, Inc.

Michael D. LaViolette, P.E. HNTB Corporation

lowa Department of Transportation

Bridge Approach Settlement Problems

Causes of Approach Settlement

Conventional repair

Why Precast Concrete?

How do you replace failed approach slabs under traffic?

Night or Weekend construction?

Why Precast Concrete?

Expedited construction technique for the commercial building and bridge industries
 Durable, High-Performance solution

Benefits

Rapid Construction/Opening to Traffic

- Overnight or Weekend "invisible" construction
- Reduced User Delays/Delay Costs
- Improved Safety for Drivers and Workers
- Controlled Fabrication Conditions
 - Improved Durability and Performance (consistent mix, adequate curing, adequate air entrainment, etc.)
- Extended Construction Season
- Construction in Remote Areas

Benefits

• Why Prestressed Concrete?

- Reduces/eliminates slab cracking
- Reduced Slab Thickness (8" vs. 12")
- Ability to span voids/unsound support layers

Benefits

Why Prestressed Concrete for approach slabs?

Ability to span voids/unsound support layers

• Move expansion joint further away from abutment

Key Features of PPCP

 Full-depth precast panels Keyed panel joints • Vertical alignment during assembly 2-way prestressing • Combination of pretensioning/post-tensioning • 2-way post-tensioning Output Bounded P-T System • Future removal of precast panels

FHWA Demonstration Projects

 2000-present: FHWA Support of Precast Prestressed Concrete Pavement (PPCP)
 Demonstration Projects for state DOTs

 2005: Iowa DOT and FHWA discuss potential applications for PPCP

• Bridge approach slabs identified

California Demonstration Project (2004)

Iowa Demonstration Project

 Constructed Aug./Sept. 2006 Precast Prestressed Bridge Approach Slabs • ~77 ft at either end of a skewed bridge • Tied to integral bridge abutment 2-way Post-Tensioning Partial-width panels (lane-by-lane construction) Installed over crushed aggregate base graded to crown ◆ Panels: 14 ft x 20 ft x 12 in.

Selected Iowa project

Project Location:

• IA Highway 60 over Floyd River (O'Brien County)

Dual bridges

- 30° skew
- Integral Abutments
- Northbound PPCP
- Southbound CIP
- Tied to abutment

Bridge Situation Plan

0 - N

Precast Approach Slab Layout

Future Projects

- Iowa DOT approach slab reconstruction under traffic
 - Single precast panel
 - P-T approach slab to abutment
- FHWA is currently providing support to state DOTs interested in constructing a demonstration project.
 - Bridge approach slabs
 - WIM Installations
 - Unbonded Overlays
 - Others?

Goals of Instrumentation Program

Iowa State University Bridge Engineering Center

 Verify structural performance of PPCP as bridge approach pavement

- Joint openings
- Bridge movements
- Girder flexural behavior
- Pile axial/flexural behavior

 Provide useful comparison with adjacent CIP bridge approach pavement

Instrumentation Plan NB Bridge

- **Joint movement crackmeters (10)**
- PT strandmeters (7
- Embedded strain sensors (16)
- Displacement transducers (3)
 Tiltmeters (2)
- Girder strain sensors (18)
- **Đ** Pile strain sensors (12)

Installation of pile strain sensors

Installation of pile strain sensors

Surface-mounted strain sensors

Embedded strain sensors - panels

Displacement transducers

Geokon Model 4427

Measure longitudinal and transverse movement of bridge abutment

Skewed abutment – bridge "rotates" in plan view

Displacement transducers installation

Tiltmeters

 Geokon Model 6350
 Measure longitudinal rotation of abutment due to thermal movements of bridge

P-T Strandmeters

Geokon Model 4410 Used to monitor long-term PT losses

Crackmeters

Geokon Model 4420
Monitors joint openings between panels
Blockouts cast in each panel

Crackmeter installation

Data acquisition system

Total of 113 sensors (both bridges)
7 multiplexers to simplify onsite wiring
Collect data once/hour for approx. 16 months