
ALASKAN WAY VIADUCT REPLACEMENT PROJECT Final Environmental Impact Statement and Section 4(f) Evaluation

FHWA-WA-EIS-04-01-F

ALASKAN WAY VIADUCT REPLACEMENT PROJECT

Final Environmental Impact Statement and Section 4(f) Evaluation

Submitted pursuant to:

The National Environmental Policy Act (NEPA)(42 U.S.C. 4322(2)(C)) and

the State Environmental Policy Act (SEPA)(Ch. 43.21 C RCW) and Section 4(f) of the Department of Transportation Act, (49 U.S.C. 303(c))

by the

FEDERAL HIGHWAY ADMINISTRATION

and

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

and

CITY OF SEATTLE DEPARTMENT OF TRANSPORTATION

Abstract

The existing Alaskan Way Viaduct (SR 99) was built in the 1950s and was damaged in the 2001 Nisqually earthquake. It is seismically vulnerable and at the end of its useful life—it must be replaced. The Federal Highway Administration, Washington State Department of Transportation, and City of Seattle plan to replace the

Daniel M. Mathis

existing facility to provide a structure capable of withstanding earthquakes and to ensure that people and goods can safely and efficiently travel within and through the project corridor. The Alaskan Way Viaduct provides vital transportation connections into and through downtown Seattle, as well as between various other regional destinations. Failure of the viaduct would create severe hardships for the city and region and could possibly cause injury or death.

The 2004 Draft Environmental Impact Statement (EIS) analyzed five Build Alternatives and a No Build Alternative for their potential effects on the human and natural environment. Based on information presented in the Draft EIS, public comments, and further study and design, the lead agencies reduced the number of alternatives from five to two. The two alternatives, the Tunnel (now the Cut-and-Cover Tunnel Alternative) and Elevated Structure, were then evaluated in the 2006 Supplemental Draft EIS

document. In 2009, the Governor, former King County Executive, and former Seattle Mayor recommended replacing the central waterfront portion of the Alaskan Way Viaduct with a single bored tunnel. The 2010 Supplemental Draft EIS analyzed the new Bored Tunnel Alternative, provided information about design changes to the 2006 build alternatives still under consideration, and compared 2006 build alternatives to the Bored Tunnel Alternative.

This Final EIS evaluates the No Build Alternative in addition to the Bored Tunnel Alternative, Cut-and-Cover Tunnel Alternative, and Elevated Structure Alternative, each with and without tolls, for their potential effects to the natural and built environments. The lead agencies have identified the Bored Tunnel Alternative with tolls as the preferred alternative. No decision will be made on the proposed action until the Record of Decision is published, which is expected in August 2011. If tolling is not

4

non-tolled facility.

Title VI

authorized by the Washington State Legislature, it could

direct WSDOT to request a revised Record of Decision

from Federal Highway Administration to authorize the

construction of the Bored Tunnel Alternative as a

WSDOT ensures full compliance with Title VI of the Civil Rights Act of 1964 by prohibiting discrimination against any person on the basis of race, color, national origin or sex in the provision of benefits and services resulting from its federally assisted programs and activities.

For questions regarding WSDOT's Title VI Program, you may contact the Department's **Title VI Coordinator** at **(360) 705-7098**.

Americans with Disabilities Act (ADA) Information

If you would like copies of this document in an alternative format—large print, Braille, cassette tape, or on computer disk, please call (360) 705-7097. Persons who are deaf or hard of hearing, please call the Washington State Telecommunications Relay Service, or Tele-Braille at 7-1-1, Voice 1-800-833-6384, and ask to be connected to (360) 705-7097.

A Federal agency may publish a notice in the Federal Register, pursuant to 23 USC §139(l), indicating that one or more federal agencies have taken final action on permits, licenses, or approvals for a transportation project. If such notice is published, claims seeking judicial review of those federal agency actions will be barred unless such claims are filed within 180 days after the date of publication of the notice, or within such shorter time period as is specified in the federal laws pursuant to which judicial review of the federal agency action is allowed. If no notice is published, then the periods of time that otherwise are provided by the Federal laws governing such claims will apply.

megantuart

Daniel M. Mathis, P.E.

Division Administrator, Washington Division
Federal Highway Administration
Lead for National Environmental Policy Act (NEPA)

06/20/2011

Megan White, P.E.

Director of Environmental Services
Washington State Department of Transportation

6/20/2011

Date of Approval

Date of Approval

Peter Hahn

Director

Seattle Department of Transportation

FACT SHEET

Project Name

SR 99: Alaskan Way Viaduct Replacement Project

Project Description

The SR 99: Alaskan Way Viaduct Replacement Project proposes to replace SR 99 between S. Royal Brougham Way and Roy Street in Seattle, Washington with a facility that has improved earthquake resistance. Damage sustained by the viaduct during the February 2001 Nisqually earthquake compromised its structural integrity. This past damage, along with the age, design, and location of the existing viaduct, makes this facility vulnerable to sudden and catastrophic failure in an earthquake.

SR 99 and Interstate 5 are the primary north-south access routes through downtown Seattle, making the Alaskan Way Viaduct a vital link in the region's highway and freight mobility system, and thus critical to the region's economy. Together with the transit system, light rail and local streets, SR 99 serves regional and local needs.

This Final EIS analyzes and compares the effects of the No Build Alternative, and the Bored Tunnel Alternative, Cut-and-Cover Tunnel Alternative, and Elevated Structure Alternative, each with and without tolls. The No Build Alternative is evaluated to provide baseline information. The lead agencies have identified the Bored Tunnel Alternative with tolls as the preferred alternative. If tolling is not authorized by the Washington State Legislature, it could direct WSDOT to request a revised Record of Decision from the Federal Highway Administration to authorize the construction of the Bored Tunnel Alternative as a non-tolled facility.

Joint Lead Agencies

Federal Highway Administration Washington Division Evergreen Plaza 711 S. Capitol Way, Suite 501 Olympia, WA 98501 - 1284

Washington State Department of Transportation Alaskan Way Viaduct Replacement Project Office Wells Fargo Building 999 Third Avenue, Suite 2424

999 Third Avenue, Suite 242 Seattle, WA 98104 - 4019

City of Seattle Department of Transportation 700 Fifth Avenue, Suite 3900

PO Box 34996

Seattle, WA 98124 - 4996

NEPA Lead Agency

The Federal Highway Administration is the lead agency for NEPA.

Responsible NEPA Official

Daniel M. Mathis, P.E.

Division Administrator, Washington Division Federal Highway Administration 711 S. Capitol Way, Suite 501

Olympia, WA 98501 - 1284

SEPA Lead Agency

The Washington State Department of Transportation is the nominal lead agency and the City of Seattle is a co-lead agency for SEPA.

Responsible SEPA Official

Megan White, P.E.

Director, Environmental Services Office Washington State Department of Transportation

PO Box 47331 Olympia, WA 98504 - 7331

Document Availability

The Final EIS is available online at:

htttp://www.alaskanwayviaduct.org

Printed copies of this Final EIS and related appendices (discipline reports) are available at City of Seattle public libraries and neighborhood service centers (see the Distribution List on page 272). These documents are also available for purchase at:

Alaskan Way Viaduct Replacement Project Office 999 Third Avenue, Reception desk on the 22nd Floor Seattle, WA 98104 - 4019

CDs and the Executive Summary are available at no charge.

Prices for printed volumes do not exceed the cost of printing and are as follows:

Final EIS (17 x 11 color) \$50

Set of Appendices \$75

Final EIS and Appendices \$125

Contact Information

To obtain a copy of the environmental documents, contact:

Angela Angove

Alaskan Way Viaduct Replacement Project Office

999 Third Avenue, Suite 2424 Seattle, WA 98104 - 4019

Phone: 206-805-2832

E-mail: AngoveA@wsdot.wa.gov

FACT SHEET

continued

Permits, Approvals, and Consultations

- National Marine Fisheries Service and U.S. Fish and Wildlife Service Section 7 Endangered Species Act (ESA) Consultation and Marine Mammal Protection Act Consultation
- National Marine Fisheries Service Magnuson-Stevens Fishery Conservation and Management Act Consultation
- Federal Highway Administration, in consultation with the Washington Department of Archaeology and Historic Preservation – National Historic Preservation Act, Section 106 Consultation
- U.S. Department of Transportation Section 4(f) Evaluation

State

- Washington State Department of Ecology Model Toxics Control Act, Removal of Underground Storage Tanks
- Washington State Department of Ecology National Pollutant
 Discharge Elimination System (NPDES), Construction Stormwater
 General Permit
- Washington State Department of Ecology Coastal Zone Management Act (CZMA), Consistency Certification
- Washington State Department of Ecology Underground Injection Control Registration
- Washington State Department of Ecology Notice of Intent for Installing, Modifying, or Removing Piezometers
- Washington State Department of Ecology Notice of Intent for Installing, Modifying, or Removing Wells
- Washington State Department of Ecology Chemical Treatment Letter of Approval

Local

- King County Industrial Waste Program Wastewater Discharge Permit, if required
- Seattle City Light Clearance Permits
- Seattle Department of Planning and Development Master Use Permit
- Seattle Department of Planning and Development Shoreline Substantial Development Permit
- Seattle Department of Planning and Development Grading Permit¹
- Seattle Department of Planning and Development Building Permit
- Seattle Department of Planning and Development Demolition Permit
- Seattle Department of Planning and Development Side Sewer Permit
- Seattle Department of Transportation Street Use Permit
- Seattle Department of Neighborhoods and Pioneer Square
 Preservation Board Pioneer Square Historic District Certificate of Approval
- Seattle Department of Neighborhoods and Pike Place Market Historic
 District Commission Pike Place Market Historic District Certificate
 of Approval
- Seattle Department of Planning and Development Major Public Project Construction Variance/Temporary Noise Variance
- Seattle Department of Planning and Development Removal or Abandonment of Underground Storage Tanks

Other Seattle Permits/Approvals

- Mechanical Permit
- Electrical Permit

- Sign Permit
- Elevator Permit
- Fire Alarm Permit

Other Permits/Approvals

- Puget Sound Clean Air Agency Clean Air Act, Air Quality Conformity Review
- Puget Sound Clean Air Agency Notice of Intent for Demolition Activities and Notice of Construction for Constructing a Concrete Batch Plant

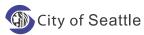
Authors and Principal Contributors

Please see the List of Preparers included at the end of the Final EIS.

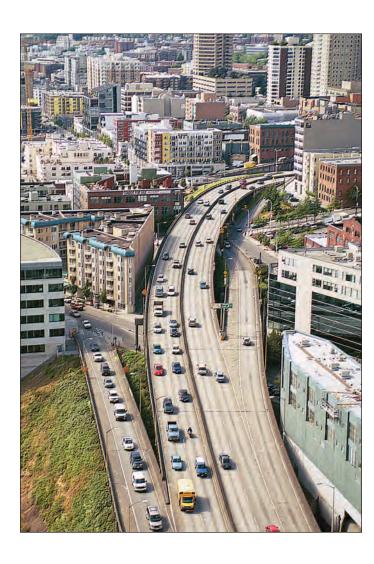
Date Issued

July 15, 2011

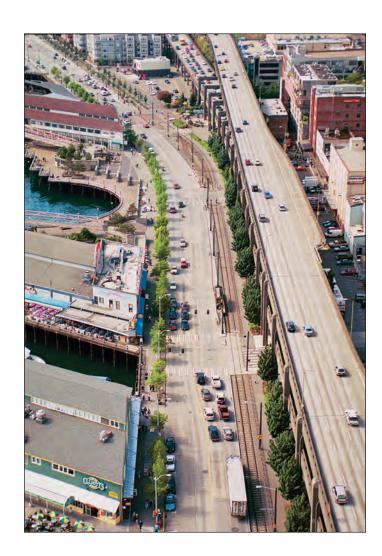
Subsequent Environmental Review


FHWA intends to issue the Record of Decision (ROD) for this project 30 days after publication of a Federal Register notice announcing that the Final EIS has been issued, or as soon after that date as practicable. The Federal Register notice is expected to be published on July 15; when published, it will be posted on the project website at www.alaskanwayviaduct.org. While the lead agencies are not required to request comments on a Final EIS pursuant to 40 CFR 1503.1(b), in order to be fully informed of the interests of all parties, the lead agencies are accepting comments on the Final EIS. If any substantive comments are received prior to the signing of the ROD, FHWA will include responses to those comments in the ROD. Comments must be received by no later than 5:00 pm on Monday, August 15, 2011 for consideration in the ROD. Comments may be submitted by mail to:

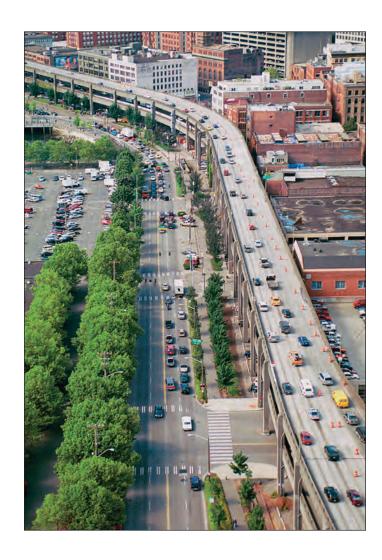
Angela Angove Alaskan Way Viaduct Replacement Project Office 999 Third Avenue, Suite 2424 Seattle, WA 98104 - 4019 or via email at: awv2011FEIScomments@wsdot.wa.gov


1 The City and WSDOT may be exempt from certain permits under some conditions. Even though this grading work may be exempt, the City would still perform a project review to ensure that the project meets City requirements for grading activities.

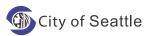
ALASKAN WAY VIADUCT REPLACEMENT PROJECT Final Environmental Impact Statement and Section 4(f) Evaluation

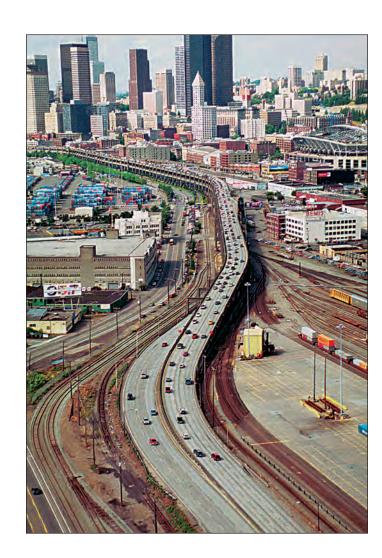

CONTENTS

Cover Sheet	\imath	Permanent Transportation Effects		31 How would SR 99 traffic be affected by restrictions	
Fact Sheet	ii	13 How would SR 99 access compare?	8	and detours?	2
In Memoriam	xii	14 Would regional traffic patterns change?	9	32 How would construction affect I-5?	2
HAPTERS		15 How would SR 99 volumes change?	10	33 How would traffic on local streets be affected by	
SUMMARY	1	16 Would conditions on I-5 change?	10	lane restrictions?	2
hat is in the Summary?	1	17 Would conditions on area streets change?	11	34 How would area noise levels change during construction?	2
1 What is the Alaskan Way Viaduct Replacement Project?	1	18 How would travel times change?	12	35 How would the economy be affected during construction?	2
2 What are the project limits and why were they selected?	1	19 How would conditions for transit compare?	17	36 How would historic resources be affected	
3 Who is leading this project?	1	Other Permanent Effects		during construction?	2
4 What is the purpose of the Alaskan Way Viaduct Replaceme	nt	20 Would noise levels permanently change?	18	37 How would archaeological resources be affected	
Project and why is it needed?	1	21 Would views permanently change?	18	during construction?	2
5 What is the history of this project?	2	22 Would properties or land uses be permanently affected?	18	38 What other effects would there be during construction?	3
6 What is the Preferred Alternative?	3	23 Would the economy be permanently affected?	19	Mitigation for Temporary Construction Effects	
7 What other alternatives are considered in this Final EIS?	4	24 Would historic resources be permanently affected?	20	39 How would construction effects be mitigated?	3
8 How does the project relate to the Alaskan Way Viaduct		25 What other permanent effects would the alternatives have?	21	40 What temporary construction effects would not be mitigated?	3
and Seawall Replacement Program?	4	26 What permanent adverse effects of the project would		41 How would this project, the Alaskan Way Viaduct and	
9 How would the Bored Tunnel Alternative replace		not be mitigated?	22	Seawall Replacement Program, and other downtown	
the existing viaduct?	4	Temporary Construction Effects		projects affect Seattle and surrounding areas?	3
10 How would the Cut-and-Cover Tunnel Alternative		27 How would the alternatives be constructed?	23	42 What opportunities have we provided for people,	
replace the existing viaduct?	6	28 How would restrictions to SR 99 compare?	23	agencies, and tribes to be engaged in the project?	3
11 How would the Elevated Structure Alternative replace		29 How would traffic be restricted on other roadways		43 What comments were made on the 2010 Supplemental	
the existing viaduct?	7	during construction?	23	Draft EIS?	3
12 How much would the project cost?	8	30 How would travel patterns on SR 99, I-5, and city streets		44 What issues are controversial?	3
		be affected during construction?	26	45 What issues need to be resolved?	3

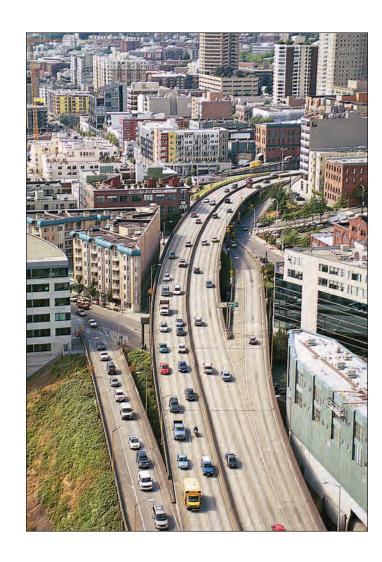


46 What are the next steps?	36	3 ALTERNATIVES DESCRIPTION	65	7 Where are the people using the viaduct coming from	
INTRODUCTION	39	What is in Chapter 3?	65	and going to?	90
nat is in Chapter 1?	39	Alternatives		8 What are typical travel conditions on SR 99?	91
1 What is the Alaskan Way Viaduct Replacement Project?	39	1 What alternatives are evaluated in this Final EIS?	65	9 How well do local streets and intersections operate?	92
What are the project limits and why were they selected?	39	2 What is the Preferred Alternative?	65	10 What are the existing conditions for specific types of users?	93
3 Who is leading this project?	39	3 What is the Viaduct Closed (No Build Alternative)?	65	11 How many parking spaces exist in the project area?	96
4 Why are the lead agencies preparing this Final EIS?	40	4 How would the Bored Tunnel Alternative replace SR 99		12 How noisy is it in the project area?	96
5 What is the purpose of the Alaskan Way Viaduct		and the viaduct?	66	13 How is the project area affected by vibration from	
Replacement Project and why it is needed?	40	5 How would the Cut-and-Cover Tunnel Alternative replace		traffic traveling on the viaduct?	97
ALTERNATIVES DEVELOPMENT	45	SR 99 and the viaduct?	68	14 What visual features are located in the project area?	98
nat is in Chapter 2?	45	6 How would the Elevated Structure Alternative replace		15 What are some of the positive and negative visual	
1 What is the history of this project?	45	SR 99 and the viaduct?	70	conditions created by the viaduct?	99
2 What alternatives were evaluated in the 2004 Draft EIS?	47	Construction		16 What is the character of and land use in the project area?	99
3 Why were the 2004 Draft EIS alternatives narrowed		7 What must happen before construction can begin?	71	17 What is the regional and local economy like now?	99
from five to two?	47	8 What construction shifts are proposed?	71	18 What historic and archaeological resources are	
4 What alternatives were evaluated in the 2006 Supplementa	ıl	9 Where would construction staging occur?	72	located in the project area?	101
Draft EIS?	47	10 What construction haul routes are proposed?	73	19 What parks and recreational facilities are located in	
5 What's happened after the 2006 Supplemental Draft EIS		11 What construction equipment and activities are		the project area?	101
was published?	49	common to the alternatives?	73	20 Who lives in the neighborhoods located in the project area?	101
6 What happened after the bored tunnel was recommended	. 51	12 How would construction of the S. Holgate Street to		21 What community and social services serve	
7 What happened after the 2010 Supplemental Draft EIS		S. King Street Viaduct Replacement Project relate		these neighborhoods?	103
was published?	54	to this project?	75	22 What public services and utilities are located in the	
8 How has the City of Seattle been involved in the project?	57	13 How would the Bored Tunnel Alternative be constructed?	75	project area?	103
9 How does the project relate to the Alaskan Way Viaduct		14 How would the Cut-and-Cover Tunnel Alternative		23 Is air quality a concern in the project area?	103
and Seawall Replacement Program?	58	be constructed?	80	24 Are greenhouse gas emissions a concern in the region?	104
10 What other projects are included in the Program?	58	15 How would the Elevated Structure Alternative		25 How much energy does transportation in the region use?	105
blic Involvement		be constructed?	82	26 What are water quality conditions in the Duwamish River,	
11 What opportunities have we provided for people to be		4 THE PROJECT AREA	85	Elliott Bay, and Lake Union?	105
engaged in the project?	61	What is in Chapter 4?	85	27 How is stormwater currently managed in the project area?	106
12 How have we been engaging businesses and residents		1 Where is the Alaskan Way Viaduct Replacement Project?	85	28 What fish and wildlife species live in or near the	
located adjacent to the project?	61	2 What elements of Seattle's history have shaped the		project area?	106
13 How have we been engaging minorities, low-income people	le,	project area?	85	29 What are the groundwater conditions in the project area?	107
and social service providers?	62	3 What is the viaduct's condition today?	87	30 Are there any potentially contaminated sites in the	
14 How have we been coordinating with agencies?	62	4 What are key features of Seattle's downtown		project area?	108
15 How have we been coordinating with tribes?	63	roadway network?	88		
		5 How are existing conditions evaluated in this EIS?	89		
		6 How much traffic is estimated to travel on SR 99, in Seattle,			
		o flow much traine is estimated to traver on 5K 99, in Seattle,			

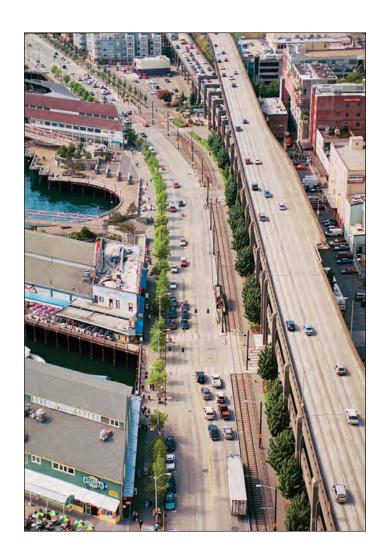




5 PERMANENT EFFECTS	111	26 How would effects to low-income and minority		Other Temporary Construction Effects	
What is in Chapter 5?	111	populations compare?	155	12 How would soil and contaminated materials be handled	
1 What happens if the viaduct isn't replaced?	111	27 How would effects to public services (such as police,		and removed during construction?	180
Transportation		fire, and delivery services) and utilities compare?	157	13 Would settlement during construction affect	
2 What conditions were modeled for the traffic analysis?	112	28 How would effects to air quality compare?	157	surrounding areas?	182
3 How do the SR 99 lane configuration and access points		29 How would effects to greenhouse gas emissions compare?	158	14 How would construction affect noise levels?	183
compare among the alternatives?	112	30 How would effects to energy consumption compare?	158	15 Would vibration during construction affect	
4 How would regional travel patterns compare?	112	31 How would effects to water resources compare?	159	surrounding areas?	184
5 How would vehicle volumes and person		32 How would effects to fish and aquatic habitat compare?	159	16 How would views be affected during construction?	185
throughput compare?	114	33 How would soil conditions and groundwater be affected?	160	17 Would temporary construction easements or	
6 How would SR 99 mainline and ramp volumes compare?	116	34 What are indirect effects, and would the		relocations be needed during construction?	185
7 How would traffic conditions on I-5 compare?	118	build alternatives have any?	161	18 How would the local and regional economy be affected	
8 How would traffic conditions on area streets compare?	118	35 What irreversible decisions or irretrievable resources		during construction?	186
9 How would conditions compare on city streets		would be committed to building the alternatives?	161	19 How would historic properties be affected	
south of S. King Street?	120	36 What are the tradeoffs between short-term uses of		during construction?	191
10 How would conditions compare for Alaskan Way		environmental resources and long-term gains		20 Would construction affect archaeological resources?	193
and streets north of S. King Street?	122	(or productivity)?	161	21 How would parks, recreation, and open space	
11 How would conditions compare for streets		37 How do the build alternatives meet the project's		be affected during construction?	194
from Denny Way north?	124	purpose and need?	162	22 How would neighborhoods be affected during construction?	195
12 How would SR 99 travel speeds compare?	125	6 CONSTRUCTION EFFECTS	165	23 How would community and social services be affected	
13 How would SR 99 travel times compare?	128	What is in Chapter 6?	165	during construction?	196
14 How would conditions for transit compare?	132	Roadway Closures, Restrictions, and Detours		24 How would low-income and minority populations	
15 How would access change for drivers, bicyclists,		1 How would restrictions to SR 99 compare?	165	be affected during construction?	197
and pedestrians?	133	2 How would traffic be restricted on other roadways		25 How would public services and utilities be affected	
Other Permanent Effects		during construction?	166	during construction?	198
16 How would noise levels compare?	135	Traffic Effects During Construction		26 How would air quality be affected during construction?	199
17 How would views change for the alternatives?	140	3 How would travel patterns on SR 99, I-5, and city streets		27 How would greenhouse gas emissions be affected	
18 What properties would need to be acquired?	144	be affected during construction?	169	during construction?	199
19 How would land use effects compare?	146	4 How would SR 99 traffic be affected by lane restrictions?	170	28 How much energy would be needed to construct	
20 How would local and regional economic effects compare?	148	5 How would construction affect I-5 traffic?	171	the project?	200
21 How would effects to historic resources compare?	153	6 How would construction effects compare to traffic on		29 How would water resources be affected during construction	200
22 How would effects to archaeological resources compare?	154	local streets?	171	30 How would fish, aquatic, and wildlife species and	
23 How would effects to parks, recreation, and		7 How would effects to transit compare?	174	habitat be affected during construction?	201
open space compare?	154	8 How would construction affect freight?	176	31 Would construction have any indirect effects?	202
24 How would effects to neighborhoods compare?	155	9 Would ferry traffic be affected?	177	32 Would construction have any cumulative effects?	202
25 How would effects to community and		10 How would event traffic be affected during construction?	178		
social services compare?	155	11 How would bicyclists and pedestrians be affected			
		during construction?	179		



	005		015		
7 CUMULATIVE EFFECTS	205	8 MITIGATION	215	18 What mitigation is proposed for effects on	
What is in Chapter 7?	205	What is in Chapter 8?	215	archaeological resources during construction?	224
Cumulative Effects Overview		Mitigation Overview		19 What mitigation is proposed for effects on parks,	
1 What are cumulative effects, and why do we study them?	205	Mitigation for Permanent Effects		recreation, and open space during construction?	224
2 How does WSDOT evaluate cumulative effects?	205	1 What mitigation is proposed for permanent		20 What mitigation is proposed for effects on	
3 How did WSDOT evaluate the cumulative effects		transportation effects?	215	neighborhoods and community services or	
for this project?	205	2 What mitigation is proposed for permanent effects on views:	216	resources during construction?	225
4 What are the results of the cumulative effects analysis?	207	3 What mitigation is proposed for permanent effects on		21 What mitigation is proposed for effects on minorities	
5 What is the cumulative effect on the built environment?	207	historic resources?	216	and low-income people during construction?	226
Land Use		4 What mitigation is proposed for permanent effects on		22 What mitigation is proposed for effects on	
6 What cumulative effects are anticipated?	208	neighborhoods and community services or resources?	217	public services during construction?	226
Visual Quality		5 What mitigation is proposed for permanent effects on		23 What mitigation is proposed for effects on utilities	
7 What cumulative effects are anticipated?	208	minorities and low-income people?	217	during construction?	227
Transportation		6 What is proposed to minimize long-term		24 What mitigation is proposed for air quality effects	
8 What cumulative effects are anticipated?	209	energy consumption?	218	during construction?	228
Noise		7 What mitigation is proposed for permanent effects on fish,		25 What is proposed to minimize energy consumption	
9 What cumulative effects are anticipated?	209	aquatic, and wildlife species and habitat?	218	and greenhouse gas emissions during construction?	228
Economics		8 What mitigation is proposed for permanent effects on		26 What mitigation is proposed for effects on	
10 What cumulative effects are anticipated?	210	soils and groundwater?	219	water resources during construction?	228
Social and Neighborhood Resources		Mitigation for Construction Effects		27 What mitigation is proposed for effects on fish,	
11 What cumulative effects are anticipated?	210	9 What mitigation is proposed for transportation effects		aquatic, and wildlife species and habitat	
Historic, Cultural, and Archaeological Resources		during construction?	219	during construction?	229
12 What cumulative effects are anticipated?	211	10 What can be done to minimize traffic effects when		28 What mitigation is proposed for effects on soils	
13 What is the cumulative effect on the natural environment?	211	multiple projects are being constructed?	220	and groundwater during construction?	230
Water Quality		11 What mitigation is proposed for noise effects		29 What mitigation is proposed for effects related to	
14 What cumulative effects are anticipated?	211	during construction?	220	hazardous materials during construction?	231
Earth and Groundwater		12 What mitigation is proposed for vibration effects		Indirect Effects	
15 What cumulative effects are anticipated?	212	during construction?	221	30 Are mitigation measures proposed for indirect effects?	231
Climate Change		13 What mitigation is proposed for effects on views		Effects Not Mitigated	
16 How did the project consider future conditions		during construction?	222	31 What permanent project effects would not be mitigated?	231
related to climate change?	212	14 What mitigation is proposed for land use effects		32 What temporary construction effects would not	
Mitigation		during construction?	222	be mitigated?	232
17 How could the cumulative effect on the resources		15 What mitigation is proposed for economic effects		9 EIS COMMENTS AND RESPONSES	235
be mitigated?	212	during construction?	222	What is in Chapter 9?	235
		16 What mitigation is proposed for parking effects		1 How did the public comment on the 2004 Draft,	
		during construction?	223	2006 Supplemental Draft, and 2010 Supplemental	
		17 What mitigation is proposed for effects on		Draft EISs?	235
		historic resources during construction?	223	2 How many comments were received?	235
		9		,	


3	What happened to the comments received on the		REFERENCE PAGES
	2004 Draft and 2006 Supplemental Draft EIS?	235	ACRONYMS & ABBREVIATIONS
4	What did the lead agencies learn from the comments		INDEX
	received on the 2010 Supplemental Draft EIS, and		REFERENCES
	how did they respond?	236	LIST OF PREPARERS
F_{I}	NAL SECTION 4(F) EVALUATION	239	DISTRIBUTION LIST
Backg	round		LIST OF APPENDICES
1	What is Section 4(f)?	239	TECHNICAL INDEX
2	What is a "Section 4(f) resource"?	240	LETTERS
3	What is a "use" of a Section 4(f) resource?	240	
4	How can FHWA approve an alternative that uses a		
	Section 4(f) resource?	240	
5	What factors must FHWA consider when determining		
	whether an avoidance alternative is "feasible and prudent"?	241	
6	What factors must FHWA consider when determining		
	which alternative causes "least overall harm"?	241	
7	What does Section 106 consultation involve, and		
	how does it relate to this Section 4(f) evaluation?	241	
Section	n 4(f) Evaluation		
1	Agencies Involved in Developing This		
	Section 4(f) Evaluation	243	
2	Purpose and Need of the Proposed Action	244	
3	Alternatives Considered	244	
4	Section 4(f) Resources	245	
5	Bored Tunnel Alternative	247	
6	Effects of the Cut-and-Cover Tunnel and Elevated		
	Structure Alternatives on Section 4(f) Properties	253	
7	Other Alternatives Considered to Avoid and Minimize Harm	256	
8	Conclusion on Search for Feasible and Prudent		
	Avoidance Alternatives	257	
9	Identifying a Least Harm Alternative	257	
10	Conclusions	261	

263	LIST OF E	IST OF EXHIBITS						
264	Summary							
264	Exhibit S-1	Project Limits	1					
266	Exhibit S-2	Proposed Construction Staging Areas	2					
269	Exhibit S-3	Project Timeline	3					
272	Exhibit S-4	Alaskan Way Viaduct & Seawall Replacement						
273		Program Elements	4					
274	Exhibit S-5	Other Projects Included in the Alaskan Way Viaduct						
276		& Seawall Replacement Program	4					
	Exhibit S-6	Bored Tunnel Alternative	5					
	Exhibit S-7	Visual Simulation Inside the Bored Tunnel –						
		Northbound	6					
	Exhibit S-8	Cut-&-Cover Tunnel Alternative	7					
	Exhibit S-9	Elevated Structure Alternative	8					
	Exhibit S-10	Build Alternatives Costs	8					
	Exhibit S-11	SR 99 Access to and from Northwest Seattle	9					
	Exhibit S-12	Screenline Locations	10					
	Exhibit S-13	2030 Daily Person Throughput at Screenlines	9					
	Exhibit S-14	Comparison of 2030 SR 99 Volumes	13					
	Exhibit S-15	I-5 Daily Vehicle Volumes in 2030	11					
	Exhibit S-16	2030 Congested Intersections – PM Peak Hour	15					
	Exhibit S-17	Congested Intersections during the AM Peak Hour	11					
	Exhibit S-18	Congested Intersections during the PM Peak Hour	11					
	Exhibit S-19	2030 Daily Vehicle Volumes for Screenlines						
		North of Seneca Street	11					
	Exhibit S-20	PM Peak Hour Travel Times for the General						
		Purpose Lanes on Second and Fourth Avenues	11					
	Exhibit S-21	Daily Vehicle Volumes on Alaskan Way in 2030	12					
	Exhibit S-22	2030 Travel Time Comparison	16					
	Exhibit S-23	2030 Transit Travel Time Comparison	17					
	Exhibit S-24	Range of Noise Effects Compared to						
		2015 Existing Viaduct	18					
	Exhibit S-25	Visual Simulations Looking North at						
		S. Royal Brougham Way	19					
	Exhibit S-26	Visual Simulations Looking North on						
		Alaskan Way at Union Street	20					
	Exhibit S-27	Summary of Surface Parcels Acquired for the						
		Alternatives	18					

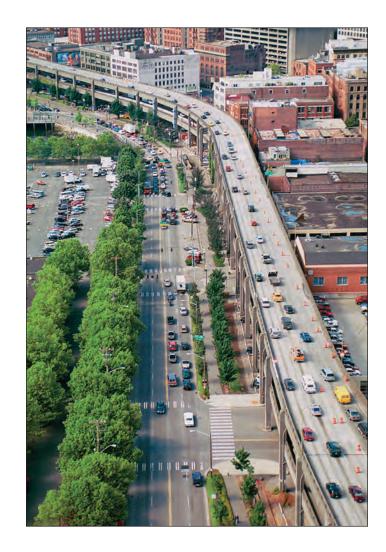


Exhibit S-28 Public Parking Spaces Removed	20	Exhibit 2-11 Daily Vehicle Miles Traveled in 2030	56	Exhibit 4-15 City of Seattle Designated Bike and Pedestrian Routes	96
Exhibit S-29 Species and Critical Habitat Effect Determinations		Exhibit 2-12 Daily Vehicle Hours of Delay in 2030	57	Exhibit 4-16 Existing Public Parking Spaces in the Project Area	96
in the Biological Opinion	22	Exhibit 2-13 Alaskan Way Viaduct & Seawall Replacement		Exhibit 4-17 Typical Sound Levels	97
Exhibit S-30 Mitigation for Permanent Effects	22	Program Elements	58	Exhibit 4-18 2015 Existing Noise Levels	97
Exhibit S-31 Construction Activities Chart	24	Exhibit 2-14 Other Projects Included in the Alaskan Way Viaduct		Exhibit 4-19 Historic Buildings and Districts	100
Exhibit S-32 Construction Roadway Closures, Restrictions,		& Seawall Replacement Program	58	Exhibit 4-20 Park and Recreation Facilities	102
and Detours	25	Chapter 3 - Alternatives Description		Exhibit 4-21 Population Characteristics in 2000	102
Exhibit S-33 SR 99 Closures and Restrictions	23	Exhibit 3-1 Bored Tunnel Alternative	64	Exhibit 4-22 Combined Sewer and Stormwater Outfalls	106
Exhibit S-34 WOSCA Detour	26	Exhibit 3-2 Bored Tunnel South Portal	66	Exhibit 4-23 Groundwater Movement in the Project Area	107
Exhibit S-35 Alaskan Way Closures and Restrictions	26	Exhibit 3-3 Bored Tunnel North Portal	67	Chapter 5 - Permanent Effects	
Exhibit S-36 Construction-Related Travel Times from		Exhibit 3-4 Assumed Toll Rates by Time of Day	68	Exhibit 5-1 Alternatives Comparison – SR 99 Ramp Connections	112
Woodland Park to S. Spokane Street	27	Exhibit 3-5 Cut-&-Cover Tunnel Alternative	69	Exhibit 5-2 SR 99 Access to and from Northwest Seattle	113
Exhibit S-37 Construction-Related Travel Times from Ballard to		Exhibit 3-6 Cut-&-Cover Tunnel North Area	70	Exhibit 5-3 2030 Daily Vehicle Miles of Travel	112
S. Spokane Street	27	Exhibit 3-7 Elevated Structure Alternative	71	Exhibit 5-4 2030 Daily Vehicle Hours of Travel	113
Exhibit S-38 Increase in Vehicle Volumes on I-5		Exhibit 3-8 Proposed Construction Staging Areas	72	Exhibit 5-5 2030 Daily Vehicle Hours of Delay	114
during Construction	27	Exhibit 3-9 Compensation Grouting	74	Exhibit 5-6 Screenline Locations	114
Exhibit S-39 Parking Effects during Construction	29	Exhibit 3-10 Construction Activities Chart	76	Exhibit 5-7 2030 Daily Vehicle Volumes at Screenlines	114
Exhibit S-40 Number of Properties Needed for Temporary		Exhibit 3-11 Jet Grouting	77	Exhibit 5-8 2030 Person Throughput at Screenlines	115
Tiebacks and Construction Easements	30	Exhibit 3-12 Bored Tunnel Potential Settlement Mitigation Locations	78	Exhibit 5-9 2030 SR 99 Mainline Volumes	117
Exhibit S-41 Daily CO ₂ e Emissions Estimates	32	Exhibit 3-13 Temporary Ferry Access Bridge	80	Exhibit 5-10 2030 SR 99 Ramp Volumes	119
Exhibit S-42 Construction Energy Consumption	32	Exhibit 3-14 Rebuilt Seawall	81	Exhibit 5-11 I-5 Daily Vehicle Volumes in 2030	118
Exhibit S-43 Excavated and Contaminated Soil Volumes	32	Chapter 4 - The Project Area		Exhibit 5-12 2030 Congested Intersections – AM Peak Hour	121
Exhibit S-44 Cumulative Effects by Resource	33	Exhibit 4-1 Cascadia Subduction Zone and the Juan de Fuca Plate	85	Exhibit 5-13 2030 Congested Intersections – PM Peak Hour	123
Exhibit S-45 Number of Submitted Items	34	Exhibit 4-2 Seattle Fault and Liquefaction Areas	85	Exhibit 5-14 Congested Intersections during the AM Peak Hour	120
Chapter 1 - Introduction		Exhibit 4-3 Regional Roadway Network	88	Exhibit 5-15 Congested Intersections during the PM Peak Hour	120
Exhibit 1-1 Project Limits	39	Exhibit 4-4 SR 99 Existing Lane Configuration	89	Exhibit 5-16 Screenline Locations on City Streets	124
Exhibit 1-2 Proposed Construction Staging Areas	40	Exhibit 4-5 2015 VMT, VHT, and VHD for Seattle Center City		Exhibit 5-17 2030 Daily Vehicle Volumes for Screenlines	
Chapter 2 - Alternatives Development		and Region	90	South of S. King Street	120
Exhibit 2-1 Project Timeline	45	Exhibit 4-6 2015 Estimated Daily Vehicle Volumes	90	Exhibit 5-18 Congested Intersections in the South Area	120
Exhibit 2-2 Alternatives Evaluated in the 2004 Draft EIS	44	Exhibit 4-7 2015 Estimated Daily Person Throughput	90	Exhibit 5-19 Daily Vehicle Volumes on Alaskan Way in 2030	122
Exhibit 2-3 2006 Supplemental Draft EIS Alternatives	48	Exhibit 4-8 2015 SR 99 Existing Daily Ramp and Traffic Volumes	91	Exhibit 5-20 Daily Vehicle Volumes in 2030 for Screenlines	
Exhibit 2-4 2006 Updated Project Costs	49	Exhibit 4-9 Existing Connections Provided To and From SR 99	91	North of Seneca Street	122
Exhibit 2-5 Partnership Process Leadership Chart	50	Exhibit 4-10 Estimated Average Traffic Speeds on SR 99 during Peak		Exhibit 5-21 Congested Intersections in the Central Area	124
Exhibit 2-6 Partnership Process Study Area	50	Hours in 2015	91	Exhibit 5-22 AM Peak Hour Travel Times for the General	
Exhibit 2-7 Screening Results Summary Table	53	Exhibit 4-11 Congested Intersections in 2015	92	Purpose Lanes on Second & Fourth Avenues	124
Exhibit 2-8 2030 Travel Time Comparison for the AM Peak Hour	55	Exhibit 4-12 SR 99 Existing Bus Routes	93	Exhibit 5-23 PM Peak Hour Travel Times for the General	
Exhibit 2-9 2030 Travel Time Comparison for the PM Peak Hour	56	Exhibit 4-13 Duwamish and BINMIC Industrial Areas	93	Purpose Lanes on Second & Fourth Avenues	124
Exhibit 2-10 Daily Person Throughput at Screenlines in 2030	56	Exhibit 4-14 Daily Truck Volumes	94		

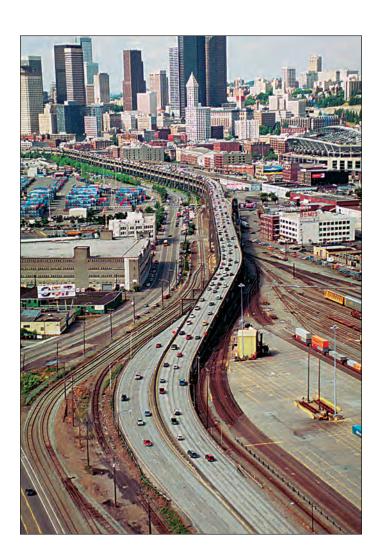


Exhibit 5-24 Daily Vehicle Volume in 2030 for Screenlines		Exhibit 5-52 Parking Effects of the Cut-&-Cover Tunnel Alternative	152	Exhibit 6-19 Typical Construction Equipment Noise Levels	183
North of Thomas Street	124	Exhibit 5-53 Parking Effects of the Elevated Structure Alternative	152	Exhibit 6-20 Demolition Photo	185
Exhibit 5-25 Congested Intersections from Denny Way North	125	Exhibit 5-54 Permanent Effects to Historic Properties	153	Exhibit 6-21 Parking Effects during Construction	188
Exhibit 5-26 AM Peak Hour Travel Times on Mercer Street	125	Exhibit 5-55 Daily Greenhouse Gas (CO ₂ equivalent)		Exhibit 6-22 Parking Affected during Construction	189
Exhibit 5-27 PM Peak Hour Travel Times on Mercer Street	125	Roadway Emissions Estimates	158	Exhibit 6-23 Bored Tunnel Alternative Parking Effects	
Exhibit 5-28 Average SR 99 Travel Speeds		Exhibit 5-56 Daily Energy Consumption	159	during Construction Stages 1 Through 7	188
During Peak Hours in 2030	125	Exhibit 5-57 Species and Critical Habitat Effect Determinations		Exhibit 6-24 Bored Tunnel Alternative Parking Effects	
Exhibit 5-29 2030 SR 99 Travel Speeds – AM Peak Hour	127	in the Biological Opinion	159	during Construction Stage 8	190
Exhibit 5-30 2030 SR 99 Travel Speeds – PM Peak Hour	129	Chapter 6 - Construction Effects		Exhibit 6-25 Cut-&-Cover Tunnel Alternative Parking Effects	
Exhibit 5-31 2030 Travel Times Comparison	130	Exhibit 6-1 Construction Roadway Closures, Restrictions,		during Construction	190
Exhibit 5-32 2030 Transit Travel Times Comparison	132	and Detours	164	Exhibit 6-26 Elevated Structure Alternative Parking Effects	
Exhibit 5-33 2030 Daily Transit Riders at Screenlines	133	Exhibit 6-2 SR 99 Closures and Restrictions	165	during Construction	191
Exhibit 5-34 2030 Daily Transit Mode Share To & From		Exhibit 6-3 WOSCA Detour	166	Exhibit 6-27 Construction Effects to Historic Properties	191
Seattle's City Center	133	Exhibit 6-4 Broad Street Detour	167	Exhibit 6-28 Housing and Population Within Two Blocks of	
Exhibit 5-35 Change in Noise Levels - Tolled Alternatives	136	Exhibit 6-5 Alaskan Way S. Traffic Routing	168	SR 99 Construction Activities	197
Exhibit 5-36 Change in Noise Levels - Non-Tolled Alternatives	137	Exhibit 6-6 Alaskan Way Surface Street Closures and Restrictions	168	Exhibit 6-29 Total Construction CO ₂ e Emissions Estimates	199
Exhibit 5-37 Range of Noise Effects Compared to		Exhibit 6-7 Construction-Related Travel Times from		Exhibit 6-30 Daily CO ₂ e Emissions Estimates	199
2015 Existing Viaduct	135	Woodland Park to S. Spokane Street	170	Exhibit 6-31 Construction Energy Consumption	200
Exhibit 5-38 Visual Simulations Looking Northwest on		Exhibit 6-8 Construction-Related Travel Times from Ballard to		Chapter 7 - Cumulative Effects	
First Avenue S.	140	S. Spokane Street	171	Exhibit 7-1 WSDOT's Approach for Assessing Cumulative Effects	205
Exhibit 5-39 Visual Simulations Looking North at		Exhibit 6-9 Increase in Vehicle Volumes on I-5		Exhibit 7-2 Study Areas for Cumulative Effects	205
S. Royal Brougham Way	141	during Construction	171	Exhibit 7-3 Current and Reasonably Foreseeable Actions	
Exhibit 5-40 Visual Simulation Inside the Bored Tunnel –		Exhibit 6-10 AM Peak Hour Travel Times during Construction		Considered for Cumulative Effects	206
Northbound	141	Along Major Transit Corridors	174	Exhibit 7-4 Cumulative Effects by Resource	207
Exhibit 5-41 Visual Simulations Looking North on		Exhibit 6-11 PM Peak Hour Travel Times during Construction		Chapter 8 - Mitigation	
Alaskan Way at Union Street	142	Along Major Transit Corridors	174	Exhibit 8-1 Mitigation for Permanent and Construction Effects	215
Exhibit 5-42 Visual Simulation Looking North Toward		Exhibit 6-12 AM Peak Hour Construction-Related Travel Times		Chapter 9 - EIS Comments and Responses	
Aurora Avenue at Denny Way	143	Along a Major Freight Corridor	176	Exhibit 9-1 Number of Submitted Items	235
Exhibit 5-43 Surface Parcels Acquired for the Alternatives	145	Exhibit 6-13 PM Peak Hour Construction-Related Travel Times			
Exhibit 5-44 Summary of Surface Parcels Acquired		Along a Major Freight Corridor	176		
for the Alternatives	144	Exhibit 6-14 Excavated and Contaminated Soil Volumes	180		
Exhibit 5-45 Parcel Areas Needed for the Alternatives	144	Exhibit 6-15 Sites with Moderate or High Potential			
Exhibit 5-46 Acquired Parcel Effects	148	of Contamination	181		
Exhibit 5-47 Public Parking Spaces Removed	149	Exhibit 6-16 Excavated Material for the Bored Tunnel Alternative	181		
Exhibit 5-48 Stadium Area Affected Parking Spaces	149	Exhibit 6-17 Excavated Material for the Cut-&-Cover			
Exhibit 5-49 Central Waterfront Area Affected Parking Spaces	150	Tunnel Alternative	182		
Exhibit 5-50 North Area Affected Parking Spaces	151	Exhibit 6-18 Excavated Material for the Elevated			
Exhibit 5-51 Parking Effects of the Bored Tunnel Alternative	150	Structure Alternative	182		

Final Section 4(f) Evaluation							
Exhibit 4(f)-1 Section 4(f) Resources Subject to Use							
	by the Preferred Alternative	238					
Exhibit 4(f)-2	Resources Subject to Use Under Section 4(f)	239					
Exhibit 4(f)-3	Section 4(f) Resources With Potential						
	Minor Effects but not Subject to Use by the						
	Preferred Alternative (map)	25					
Exhibit 4(f)-4	Section 4(f) Resources With Potential						
	Minor Effects but not Subject to Use by the						
	Preferred Alternative (table)	25.					
Exhibit 4(f)-5	List of Section 4(f) Resources Evaluated for						
	Potential Use	259					

IN MEMORIAM...

This document is dedicated to the memories of Maureen Sullivan (WSDOT), Roland Benito (WSDOT), and James Leonard (FHWA). Their legacy of dedication and contributions to the delivery of the Alaskan Way Viaduct and Seawall Replacement Program is immeasurable. We will carry forward their spirit and commitment towards delivery of this public safety project in their memories.