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Executive Summary

This report describes the development of an algorithm to detect anomalies in the
time series from inductance loop sensors. The anomalies may arise from traffic incidents
or loop detector system malfunction. The algorithm uses the statistics associated with
inductance loop data to make an optimal prediction of the volume and occupancy
values expected at the next time step. To guarantee the optimality of this prediction a
Kalman predictor, for use with inductance loop data, is developed. To detect variations
from the normal state the optimal prediction is compared with the observed value.
Anomaly detection is accomplished by applying thresholds on the difference between
the predictions and the observed values. This report demonstrates the use of the
anomaly detection algorithm using inductance loop data gathered on Interstate Five
in Seattle, Washington. It also discusses the scaling and values of thresholds necessary
for anomaly detection. This type of dynamic prediction and threshold can be valuable

to traffic management systems that rely heavily on inductance loop data.






1. INTRODUCTION

Inductance loops are the principal traffic sensor for a number of metropolitan traffic
management systems. The detection of anomalous conditions in the inductance loop
data stream has many potential uses, particularly as an indicator of traffic “incidents.”
This report describes and demonstrates a new predictor/detector methodology which
nses an optimal recursive predictor (a Kalman predictor[Boz84]) with real time induc-
tance loop data to identify anomalies in a traffic management system’s inductance loop

data stream.

A detection systemn can be used to identify anomalies associated with both traffic
incidents and data acquisition system malfunction. If the difference between these types
of anomalies can be distinguished, then the inmediate detection of anomalies will allow
more rapid response to incidents as well as equipment failure. Recursive predictor
algorithms have been used in transportation research to examine traffic flow [0584,
Lu90, CS90] and used in other engineering fields to do fault detection. This report
presents not only the use of an optimal recursive predictor but also uses information
about the correlation between the state variables to construct the system model for
the predictor. The specific properties of the time series useful in this effort are the
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correlation between the data items produced by the inductance loop detectors. These
correlations include: (1) the correlation between volume and occupancy (the properties
measured by single inductance loops); (2) the correlation between data from adjoining
lanes; and (3) the correlation between time series from loops along the path of traffic

flow!,

These properties and a recursive optimal predictor are combined to produce
a demonstration of the utility and effectiveness of such a predictor/detector. This

demonstration uses inductance loop sensor traffic data taken from Interstate Five in

Seattle, Washington.

'Recent work has demonstrated the correlation hetween data fron toops separated by relatively
long distances of one half to one mile can be used to estimate travel time between the loaps[Dai92].
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2. THEORY

Anomaly detection requires first a prediction of the “normal” state and then a threshold

value to be used to identify a measurement that is not in the “normal” range. This

section develops a theoretical base for predicting the normal state at a particular time

step based on historic data. This prediction uses a vector optimal recursive predictor

or vector Kalman predictor.
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Figure 2.1: Inductance loop layout.

The volume (vehicles per honr) and occupaney (the pereent of some total time a

segment of highway is occupied by vehicles) tune series are modeled as a mean value
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Figure 2.2: Inductance loop observation vector.

about which there is a statistical fluctuation. For this report, the observation variable
will be a vector combining the volume and occupancy observations. The members of
the observation vector at each time step are the volume and occupancy values from
loops at several locations. Figure 2.1 represents the loops pictorially and figure 2.2
shows the members of the observation vector in which V(I,m. k) is the volume at loop
[ at site m at time step k; and O({, 11, k) is the occupancy at loop [ at site m and time

step k. The observation vector at time step k is modeled as the combinations of a state



vector X (k) with a zero mean random variable term v(k) and is written
Y(k) = X (k) + o(k). (2.2)

For this detection application we wish to make an optimal prediction for the value of

X at the next time step (k + 1}. The future value is
X(k+1)= AX(k) + w(k), (2.3)

where A is a system model for X that reflects the dynamics of the system and w(k) 1s
a zero mean random variable or “noise” term. The systemn model pmvi(h's' a neans Lo
estimate the future value based on the present value.

The system model or transition matrix A describes the dynamics of the process.
The system model is usually constructed from a differential equat ion for the process,
but in this case there is no simple dynamics equation that relates the observed variables.
However, previous work has demonstrated that there is a correlation between the time
series from upstream and downstream sites (e.g. a perturbation of the mean volume
count. at the upstream station will he seen at the downstream station some time later
depending on the tratlic speed[Dai92]).  Additional information abont the dynamics
of the time series is available from the correlation between the values of volume and
occupancy observed in adjacent lanes. In this work the correlated information in the
time series arising from different sites and lanes is exploited to construct a system
model, or what in this case is better described as a transition matrix since it is based

on the past transitions and is used to estimate the future one.



The transition matrix is derived from the prediction equation 2.3 and the correlated
information in the time series. Equation 2.3 is post multiplicd by X{&)7 (the transpose

ol X(k)), and then taking the expected value results in,
E{X(k+ DX (K)T} = E{AX(K)X(E)T} + E{w(k)X(k)T}, (2.4)
which, with the assumption that the noise term is uncorrelated, can be rewritten as
E{X(k+ 1)X(K)T} = AE{X (k)X (£)T} + E{w(k)) E{X (k)T}. (2.5)

Since w is assumed to be zero mean noise E{w} = 0. and the transition matrix is
written,

A= BAX(k+ DXR)T) [E{X(8)X (k) }] . (2.6)

This transition matrix is made up of the covariance matrix at zero lag time,

E{X(k)X(k)T} (2.7)
and the covariance matrix at one time increment lag,
E{X(k+1)X(k)T}. (2.8)

Physically this is a measure of the common information in the time series from one
time step to the next, normahzed by the information common between the members of
the state vector. The explicit use of the correlated information (al lag time zero and
one) to construct the transition matrix is a new contribution.

The transition matrix just presented provides an estimate of the transition matrix
using (k 4+ 1} observations. In reality there are only K observations of the time series
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and therefore only (& — 1) transitions. An approximation of the transition matrix

based on the (i — 1) previous transitions is constructed:

Z\ X(k—1) H‘Z X(k—DX(k—-DT| . (2.9)

‘Thiis transition matrix uses the information in the time series from the last (K — 1)
transitions to build an estimate to be used in the next transition. With the transition
mnatrix established it is possible to construct an optimal recursive predictor.

In order to make an optimal estimate of the future value of the time series a vector
Kalman predictor formulation is used. The vector Kalman predictor for this application
consists of three parts, a prediction equation, a gain equation and an error estimation
cquation which can be written [Boz81]

Predictor:

Xk + Lk = AX (k= 1)} + G (k) = X(klk = 1)) (2.10)

Gain:
(k) = AP(k[k — 1)[P(k[k — 1) + R(B)]™ (2.11)

Error:
(e + LK) = [A — GUR)PkE = DAT +Q(k) (2.12)

where X (kJk = 1) is the filtered estimate of X at thme step & given the (A= 1)st estimate

and where,

A is the transition malrx,

=1



(k|k — 1) is the predicted covariance matrix,
Y (k) is the observation vector from the ‘A’th time step,
Q(k) = E{ww?’}, and

R(k) = E{vvT}.

The Kalman predictor formulation in combination with the transition matrix just de-
veloped provides the first part needed for an incident detector, namely an optimal
prediction of the expected “normal™ state to whiclh observations are compared.

The second part needed for an anomaly detector is a set of thresholds for identifyimg
*anomalous” values. These thresholds need to be scaled appropriately for the data.
The number of standard deviations from the prediction is the scale on which the size
of the deviation from normal is measured. If there are K obscervations of ¥ (k) (the

observation vector) the standard deviation vector is written

Ko

a(i) Z — pu(K))? {2.13)
where
R .
= Z (2.14)
When the (k 4 1)st observation is available it is compared to the predicted value

(X(k +1)) using the metric

VE+1)— X(k+1)

D= 7(K)
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It is this metric which is calibrated agaiust observed traffic conditions. The actual
threshold for anomaly detection is based on the the size 6f the individual members d;
of D. For example, one criterion might be that the observed volume deviation be for
Jane one (d;) be less that a criterion my and the observed occupancy deviation {d;) be

greater thal some other criterion g,

dy < (2.16)

(12 > Mma. (217)

This type of criterion might indicate that traffic has stopped or slowed significantly in
that lane in the last time step. The selection of these threshold values depends upon
actual observation of traffic flows on the freeway in question.

This section has presented a methodology for establishing dynamic thresholds for
ocenpancy and volie observations from individual lanes. I presented the devel-
opment of a new system function based on the correlation hetween the observable
volume and occupancy vahies which is then used with an optimal recursive predictor.
The deviation of the newest observation from the prediction js scaled by the standard
deviation to provide a meaningful metric for measuring the deviation from the optimal

prediction.
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3. APPLICATION IN FREEWAY TRAFFIC

This section uses highway occupancy and volume counts from Interstate Five (I-5) in
Seattle, Washington to demonstrate the proposed anomaly detector. It demonstrates
the use of dynamically predicted values and the dynamic thresholds using loop data.
The loop data is from a period of time when the roadway is at an initially low congestion
level and then congestion increases until traffic is nearly stalled. This section also
demonstrates the use of the proposed method to detect the change in state of the

traffic from a steady flow to a “stop and go™ condition.

Interstate Five Northbound

Laned L[] | > | >
Laned L1 | > | )
Lane2 L1 | > M >
Lanel [ M > N3 >
N1 N2 F

State A
[ = Inductance Foops Route

520

Figure 3.1: Inductanee loop locations on northbound In-
terstale Five in Scattle,
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To demonstrate the dynamic nature of the prediction and threshold, volume and
occupancy data from five sites on (I-5) were recorded. Sites were selected based on the
leavy congestion expected during peak hours at the intersection of State Route 520
(SR-520) and (I-5). The loop layout for the northbound lanes is shown in figure 3.1, the
loops are labeled by lane and location. (e.g. ‘Loops locations are labeled N1 through N5
below the lanes, and the lanes are marked | through 4.) There are a total of 19 loops
in the measurement set, each reporting oue minute average volume and occupancy
values. Near the intersection between SR-520 and 1-5 the widest range of volume and
occupancies is expected. During peak periods at least two major observations can be
made, (1) SR-520 canses a backup onto I-5 in the right most lanes and (2) the left

most lanes are less effected by SR-520.

A good predictor should reproduce these effects. The quality of the predictor de-
pends heavily on the transition matrix. The transition matrix (equation 2.9) is con-
structed using the time averaged volume & occupancy from the loops. It is created by
averaging over a startup period of sixty minutes. After this startup period a prediction
ol the volmme and occupancy values for the loops is made each minute. On 1-5 near
the SR-520 interchange it is conmon for the the right most lanes to become heavily
congested while the left most lanes are less heavily congested. The global efficacy of
the prediction algoritlin can be demonstrated by the aceurate prediction of the future
value of hoth types of lanes simultaneously. Figure 3.2 shows the observed (Y (&) from
equation 2.2) and predicted values (\’(L) from equation 2.10) of the occupancy in the
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right most lane verses time. (The southern most site N1 is at the bottom of figure
3.2 and the northern most site N4 is at the top). The prediction and the observation
are in agreement for two very different traffic conditions estimated simultaneously. At
2.2 hours into the measurement the occupancy of lane 1 at site N2 shows a heavily
congested road way, with traffic nearly stopped. Meanwhile the small occupancy val-
ues in lane 1 at site N4 show little congestion. A single transition matrix produces
predictions that agree with observations in two very different traffic patterns at the
same time but at locations separated by 0.5 miles. The tine dependent volume for
these sites is shown in fignre 3.3, Ouce again, the significant. trends in the volume are
well represented by the predictor. The combination of an optimal recursive predictor
and the transition matrix presented provides a predictor suitable for use as a baseline

for a dynamic threshold anomaly detector.
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A dynamic threshold is demoustrated here using a combination of volume and
occupancy criteria. This dynamic threshold technique is most effective at identifying
a rapid change in the time series being examined. This is especially useful if the
volume and occupancy statistics in a free flow condition are very different than those
observed during congested periods. Using the samme data set, the onset of congestion
can be identified using a dynamic threshold. Rapidly increasing occupancy coupled
with rapidly decreasing volume is an indication of traffic rapidly slowing and becoming
congested. These observations are true [or the onset of the congestion in the right most
lane of 15 cansed by stopped traffic on SR-520. When there is a stopped traffic on the
SR-520 bridge the quene of stopped traffic extends south on 1-5. As the length of the
queue passes each indnctance Joop site a relatively rapid and siguificant change in the

voliume and occupancy values results.

One possible threshold, to identify a change in state or anomaly, is when the ob-
served occupancy value is three standard deviations larger than the predicted value
and the volume value is two standard deviations smaller than the predicted value. For
example, at site N1 this s written

gk 4 1) — ik + 1)

dy = < =2 (3.1)

a,
ek 4 1) =k + 1)

Ty

where y; and , are the first two member of the observation vector and are the values



of the volume and occupancy of lane one at site NI At site N2 this is,

¢ k 1) — .A,l k l
9

_tholk+ 1) = d4(k + 1)

T30

More generally the thresholds are,

\ L J 7

When these thresholds are used with the data sed presented two anomalous conditions
are identified. In fignres 3.4 & 3.5 the two standard deviation ocenpancy threshold is
shown as a dashed line and the observed occupancy data as a solid line. In addition
the time of the anomalous condition {defined as crossing the specified threshold) is
indicated .by a vertical line. The first of the two identificd anomalies takes place
1.45 hours into the measurement at site N2 indicating the queue is passing the loop
location closest to SR-520 on I-5. The second anomaly takes place at 1.5 hours into
the measurement indicating that the quene has extended the 0.5 miles separating the
loops in approximately 3 minntes.

This type of dynamic threshold is appropriate for identifying rapid changes in the
traffic state. It is noteworthy that the anomaly identified is the transition from normal
flow to high congestion and that once high congestion is the established state that
the detector does not continue to identily the traffic flow as anomalous. In addition
those lanes that arc unaffected by the backup are not identificd as anomalous. This is

16



demonstrated by the data and threshold from site N3 shown in the plot at the top in
figures 3.4 & 3.5.

Clearly the use of a threshold based detection system to identify specific traffic
events requires knowledge of the expected impact of particular eveuts on the traffic
state. The next step in this research is to measure at a set of sites for a sufficient.
period that an inventory of incidents (as identified by traffic management cameras and

state police logs) is available to set threshold conditions for differing types of events.
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4. CONCLUSION

This report presented a methodology that can improve the capabilities of a traffic man-
agement system based on inductance loop sensors. It described a predictor/detector
methodology suitable for ideutifying changes in the traflic state hased on measured
volumes and occupancies. The prediction of fature valnes was done using an optimal
recursive predictor based on a Kalman predictor formudation. The system model or
{ransition matrix necessary for such a formulation was developed direetly from the
statistics of the problem. The transition matrix and the predictor fornntlation were
used with inductance loop data from a number of sites on 15 to demonstrate the va-
lidity of the prediction concept. Aunomaly detection was presented using the predictor
with a set of thresholds. Thresholds for detection of anomalies were developed based
on the deviation of the observed values from the predicted values at that time step, and
the thresholds were scaled based on the standard deviation of the data. Two simple
thresholds (one on volume and one on occupancy) were used with the predictor and
data from I-5 to demonstrate the detection of the onset of congestion and the increase
in quene lengih on -5 The methodology presented in this report combined observa-

tions about the properties of inductance loop data with an optimal recursive predictor
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to produce a new inductance loop based anomaly identification system.
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